ログイン
言語:

WEKO3

  • トップ
  • ランキング
To

Field does not validate

To

Field does not validate

To
lat lon distance


インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学術雑誌論文
  2. 生産環境工学科

Precise LULC classification of rural area combining elevational and reflectance characteristics using UAV

https://nodai.repo.nii.ac.jp/records/2000329
https://nodai.repo.nii.ac.jp/records/2000329
4c2080ae-0474-4010-a5ce-e8c0b15e4f84
名前 / ファイル ライセンス アクション
1-s2.0-S2468227624003739-main.pdf 1-s2.0-S2468227624003739-main.pdf (28 MB)
license.icon
Item type 学術雑誌論文 / Journal Article(1)
公開日 2024-11-04
タイトル
タイトル Precise LULC classification of rural area combining elevational and reflectance characteristics using UAV
言語 en
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
著者 Ke Zhang

× Ke Zhang

en Ke Zhang
Rural Development Division, Japan International Research Center for Agricultural Sciences

Search repository
Lameck Fiwa

× Lameck Fiwa

en Lameck Fiwa
Faculty of Agriculture, Lilongwe University of Agriculture and Natural Resources

Search repository
Madoka Kurata

× Madoka Kurata

en Madoka Kurata
Japan International Cooperation Agency

Search repository
Hiromu Okazawa

× Hiromu Okazawa

en Hiromu Okazawa
Faculty of Regional Environment Science, Tokyo University of Agriculture

Search repository
Kenford A.B. Luweya

× Kenford A.B. Luweya

en Kenford A.B. Luweya
Graduate School of Agro-Environmental Science, Tokyo University of Agriculture

Search repository
Mohammad Shamim Hasan Mandal

× Mohammad Shamim Hasan Mandal

en Mohammad Shamim Hasan Mandal
Forestry Division, Japan International Research Center for Agricultural Sciences

Search repository
Toru Sakai

× Toru Sakai

en Toru Sakai
Social Sciences Division, Japan International Research Center for Agricultural Sciences

Search repository
内容記述
内容記述タイプ Other
内容記述 "With the development of unmanned aerial vehicle (UAV) in the recent decade, very high-
resolution aerial imagery has been used for precise land use/land cover classification (LULC).
However, special structures in rural areas of developing countries such as traditional thatched
houses have posed challenges for precise LULC classification due to their undistinctive appearance
and confusable characteristics in both reflectance and structure. LULC mapping is essential
particularly in rural areas which have high data scarcity and vulnerability to natural disasters.
With high-resolution observation has been achieved by UAVs, it is important to propose high-
precision LULC classification methods which can fully use the advantages of UAVs. To emphasize
the differences among the common LULC types in rural areas, this study proposed an original
index, the rural residence classification index (RCI). RCI was calculated as the product of the
above ground height and the square of the difference between the NDVI value and one. Then, a
comprehensive classification method was established by combining the RCI, the traditional
threshold method and a machine learning method. As a result of the comparison with the
traditional threshold method, object-based image analysis, and random forest methods, the
method by this study achieved the highest overall accuracy (overall accuracy =0.903, kappa =
0.875) and classification accuracy for detecting thatched houses (user’s accuracy =0.802, producer’s
accuracy =0.920). These findings showed the possibility on identifying the confusable
structures in rural areas using remote sensing data, which was found difficult by the previous
studies so far. The method by this study can promote the further utility of UAVs in LULC classification
in rural areas in developing countries, thereby providing precise and reliable material
for hydrological, hydraulic or ecosystem modelling, which eventually contributes to more accurate
natural hazard risk assessment, rural development, and natural resource management."
言語 en
書誌情報 en : Scientific African

巻 26, 号 e02431
出版者
出版者 ELSEVIER
言語 en
DOI
識別子タイプ DOI
関連識別子 https://doi.org/10.1016/j.sciaf.2024.e02431
権利
言語 en
権利情報Resource https://creativecommons.org/licenses/by/4.0/
権利情報 Creative Commons Attribution 4.0 International
著者版フラグ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
戻る
0
views
See details
Views

Versions

Ver.1 2024-11-04 03:51:16.489864
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3