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General Introduction 

 

In bacteriology, the genomic era began in 1995, when the first complete bacterial genome 

was sequenced using conventional Sanger sequencing method.1 Due to limitations of Sanger 

sequencing with respect to throughput and costs,2 genome sequencing projects had spent a lot of 

budgets and years of effort. In 2005, the advent of the first next-generation sequencing (NGS) 

instrument, Roche/454 GS20 became available.3 Since then, NGS now delivers sequence data 

thousands of times more cheaply than Sanger sequencing. History of DNA sequencing is 

summarized in Table 1. 

 

Classification of NGS 

NGS platforms can be divided into two broad groups depending on its read length.4 

Short-read sequencing platforms typically generate shotgun sequences with 35-200 bp read length. 

Long-read sequencing platforms generally produce shotgun sequences with 500-3,000 bp read 

length. Within these broad categories, there is considerable variation in performance, including 

throughput and error rate (Table 2). In addition, factors affecting usability, such as cost and run time 

should be considered. 

In 2013, the most widely used short-read sequencing platform is HiSeq 2000/2500 

(Illumina).5 This platform can produce 600 giga bases (Gb) with 2 x 100-bp read length in one run 

(run time, 11 days, Table 2). MiSeq (Illumina), the smaller and lower throughput version of the 

HiSeq 2000/2500 machine, is also widely used in microbiological laboratories. It produces only 1.5 

Gb compared to HiSeq, but it greatly reduces run time to 27 hours. Now Illumina’s platform also 

achieves the highest read accuracy in NGS systems. While it uses fluorescence imaging technologies 
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for the detection of base, Ion PGM/Ion Proton platform (Life Technologies) adopts 

semiconductor-based technologies.6 Ion Proton can produce up to 10 Gb with up to 200-bp read 

length (Proton I chip) within 2 hours. However, this platform uses pyrosequencing technologies and 

is prone to make mistakes in homopolymers.4 

The most widely used long-read sequencing platform is 454 GS FLX+ (Roche). This 

platform can produce 0.7 Gb with 700-800-bp read length in one run (23 hours, Table 2). This read 

length is almost comparable to conventional Sanger sequencing, thus 454 GS FLX+ is mainly used 

for de novo genome sequencing. But this platform provides lower throughput and needs higher 

per-base costs than other platforms. In addition, due to pyrosequencing technologies, it is prone to 

make mistakes in homopolymers. So the combination of 454 and Illumina platforms is common in 

de novo genome sequencing. 

PacBio RS platform (Pacific Biosciences) is for so-called ‘third-generation’ sequencing. 

Compared to the above platforms, this platform does not need amplifications of sequencing molecule, 

which is called ‘single-molecule’ sequencing.7 It can produce 3 Gb reads with 3-kb (maximum 23 

kb) read length in one run (Table 2). This platform can produce very long read than any other 

platform, but the base accuracy of the first version was very low. However, as recent improvements 

have increased greatly its base accuracy,8 this platform is very promising for de novo genome 

sequencing now. In this thesis, I adopted PacBio RS for de novo genome sequencing (See chapter 

III). 

 

NGS applications for microbiology 

There are four major NGS applications for microbiology: re-sequencing, de novo 

assembly, RNA-seq, and meta genomics (Fig. 1).9 Re-sequencing is one of the major areas of 
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application for NGS. For re-sequencing, short-read sequencing platform is suitable, owing to its high 

throughput, high accuracy, and cost-effective features. Sequence reads that are mapped to a known 

reference sequence can be used to identify single-nucleotide polymorphisms (SNPs; also called 

single-nucleotide variations, SNVs), small insertions or deletions (collectively called InDels), and 

copy number variations (CNVs) or other structural variations (SVs). These genetic differences 

between a reference genome and a targeted genome help the better understanding of the genetic basis 

of phenotypic differences. 

When a closely related reference genome is unavailable, we have to consider de novo 

assembly. For de novo assembly, long-read sequencing platform is suitable. It can produce a draft 

genome rapidly, typically with dozens to hundreds of contig sequences. However, because of the 

presence of repetitive sequences such as rRNA operons and insertion sequences (IS), no 

second-generation sequencing was able to generate accurate one-contig-per-replicon assemblies that 

might be equal to a finished genome. Finishing genome using NGS still remains a time-consuming 

task. Recently, PacBio RS platform successfully demonstrated the production of a complete genome 

sequence (See chapter III). 

RNA-seq is sequencing of cDNA to quantify gene expression or/and identify novel 

transcripts. Compared to microarrays, RNA-seq offers high signal-noise ratio, nearly unlimited 

dynamic range, and single-base resolution, and is applicable to microorganisms without reference 

sequences. RNA-seq helps the better understanding of regulation of gene expression through an 

experiment with different culture conditions. 

Meta genomics is defined as the direct genetic analysis of genomes contained with an 

environmental sample. While traditional microbiology relies upon cultivated clonal cultures, meta 

genomics can produce a profile of diversity in the environment. Meta genomics gives genetic 
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information on potentially novel biocatalysts or enzymes, genomic linkages between function and 

phylogeny for uncultured organisms, and evolutional profiles of function and structure of a 

community.10  

 

Bioinformatical challenges of NGS for microbial genomics 

Because NGS produces a huge amount of data and this field is new and progresses rapidly, 

bioinformatical challenges are increasing exponentially. The aim of this thesis is to establish novel 

bioinformatical methods for NGS and apply them to microbial genomics. Especially, I have dealt 

with applications of re-sequencing and de novo assembly. 

Since I started NGS five years ago, a huge number of software for NGS has been released. 

However, even today, there is no integrated application program for every application of NGS. It is 

necessary to combine a variety of software tools for each purpose. In chapter I, to expedite 

re-sequencing analysis, I have developed the analysis pipeline, NODAI Sequence Annotation 

Pipeline (NSAP). I applied NSAP to re-sequencing of Bacillus subtilis. In chapter II, to annotate 

variations detected from re-sequencing analysis, I have developed the software, COVA (comparison 

of variants and functional annotation). I applied NSAP and COVA to re-sequencing of 

Saccharomyces cerevisiae. In chapter III, I have established the methods for determination of novel 

genome sequencing using NGS and genome annotation, and applied these methods to determine the 

complete genome sequencing of a lactic acid-producing bacterium. 
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Table 1. History of DNA sequencing 
 

Year Events 

1973 Publication of the DNA sequence of 24 bp 

1977 Publication of Sanger sequencing method 

1983 Development of polymerase chain reaction (PCR) method 

1987 Invention of first automated sequencer 

1995 First success in sequencing of the bacterial complete genome (Haemophilus 

influenzae) 

1996 Invention of capillary sequencer 

2005 Invention of 454 Life Sciences (Roche) Next Generation Sequencing system 

2007 Invention of Solexa (Illumina) and ABI (Lifetech) Next Generation Sequencer 

2009 Invention of Helicos single molecule sequencer 

2011 Invention of Pacific Biosciences single molecule sequencer 

2012 Demonstration of ultralong single molecule reads by Oxford Nanopore 

Technologies 
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Table 2. Performance of typical next-generation sequencers (NGS) 

 

Sequencer ABI 3730xl 454 GS FLX+ Genome Analyzer IIx     HiSeq 2500 Pac Bio RS 

Maker  Life Technologies  Roche  Illumina  Illumina  Pacific Biosciences 

Generation 1st 1st 2nd 2nd 3rd 

Chemistry Sanger Pyro-sequencing Sequence-by-synthesis Sequence-by-synthesis Single molecule 

real-time sequencing 

Read length 400-900 bp 700-800 bp 2 x 100 bp 2 x 100 bp 3-15 kb 

Data output 

per run 

1.9∼84 kb 0.7 Gb 60 Gb 600 Gb 

(HO mode) 

0.1-0.7 Gb 

Accuracy (%) 99.9991 99.91 981 981 82.1-84.42 

Run time 

per run 

20 minutes - 3 hours 23 hours 10 days 11 days 

(HO mode) 

2-3 hours 

Accuracy was referred from Liu, L. et al. (2012)1 and Shin, S. C. et al. (2013)2. 
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Figure 1. Application of NGS for microbial genomics. 

This figure is modified from Nowrousian, M. (2010).9 
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CHAPTER I 

 

Development of an analysis pipeline for NGS data and its application to re-sequencing of Bacillus 

subtilis laboratory strains 

 

Abstract 

With the recent advent of next-generation sequencing technologies, one can achieve an 

accurate characterization of a mutant genome relevant to a parental reference strain. In order to 

identify mutations using NGS, it is necessary to combine a variety of software tools, such as for 

quality control of sequenced reads, alignment, detection of variations, and functional annotation. To 

facilitate re-sequencing analysis with multiple samples, I developed a suite of automated tools, 

NODAI Sequence Annotation Pipeline (NSAP), and applied it to re-sequencing of Bacillus subtilis. 

The strain of B. subtilis 168 used in laboratories in Japan was distributed in the 1990s when the 

sequencing consortium commenced operations. After 20 years of use of B. subtilis 168 in many 

laboratories, observations of variations in growth phenotypes have been reported. In this study, to 

uncover laboratory-specific variations of B. subtilis 168 strains in Japan, I re-sequenced 11 B. subtilis 

168 strains from nine laboratories and analyzed how their genomes differed. It was found that the 

168 strains from different laboratories differed by 1-7 variations. These variations might have been 

caused by differences in storage conditions in the laboratories or differences among colonies of the 

original stock. Based on my results, researchers ought to understand the genetic differences among 

wild-type (parental) strains in different laboratories and the reference strain by re-sequencing analysis, 

and ought to pay more attention to the management of laboratory strains. In addition, NSAP 

successfully demonstrated the dramatical reduction of time for bioinformatical analysis. 
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Introduction 

With the recent advent of next-generation sequencing technologies, one can achieve an 

accurate characterization of a mutant genome relevant to a parental reference strain. Because of the 

relatively small genome size of bacteria, sample multiplexing (also called barcoding or indexing) 

makes it possible to sequence dozens of bacterial whole genomes in one sequencing run. This 

dramatically accelerates the speed of analysis in bacterial genetics. 

Then researches are facing the challenge of bioinformatical analysis of enormous NGS 

data. In order to identify mutations using NGS, it is necessary to combine a variety of software tools, 

such as for quality control of sequenced reads, alignment, detection of variations, and functional 

annotation (Fig. 1). When one handles multiple samples, it takes a lot of time for running various 

software tools manually for each sample. So I developed a suite of automated tools, NODAI 

Sequence Annotation Pipeline (NSAP). NSAP integrates several software tools for alignment, de 

novo assembly, and detection of structural variants. Once researchers write a recipe file that describes 

a protocol of analysis, NSAP automatically executes those software tools. NSAP can dramatically 

save the time of bioinformatics analysis. 

For re-sequencing application, an accurate reference sequence is necessary to identify the 

variations that cause a mutant phenotype. Bacillus subtilis is used as a model for Gram-positive 

bacteria for more than half a century. The genome of the B. subtilis 168 strain was sequenced by an 

international consortium in the 1990s, and was published in 1997.1 Since sequencing the genome 

involved more than 30 laboratories, there was concern about sequencing errors. Srivatsan et al. 

identified 1,519 variations of the published sequences using a next-generation sequencer.2 This 

published reference sequence was updated by re-sequencing using next-generation sequencing 

technologies in 2009.3 
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The strain of B. subtilis 168 used in laboratories in Japan was distributed from Dr. 

Naotake Ogasawara’s laboratory (Nara Institute of Science and Technology) when the Japanese 

sequencing consortium commenced operations in the 1990s (Fig. 2).4 I noticed that there were 

approximately 20 variations between the 168 strain in Dr. Hirofumi Yoshikawa’s laboratory (Tokyo 

University of Agriculture) and the reference sequence3 when I re-sequenced it using next-generation 

sequencing (data not shown). One possibility is that errors still exist in the updated reference. 

Another is that laboratory-specific variations exist. For example, it has been found that isolates of E. 

coli MG1655 from different laboratories can display considerable variations.5 A similar observation 

was reported for cyanobacteria.6 Similarly, after 20 years of use of B. subtilis 168 in many 

laboratories, observations of variations in the growth phenotype were reported (e.g., variations in the 

growth rate on minimal media), and hence a new culture derived from the original collection of B. 

subtilis strain 168 was used in functional analysis and re-sequencing projects.3 

In the post-genome era, study depends extensively on genomic information. Thus 

obtaining genome information on laboratory strains would aid in understanding the reproducibility of 

results between laboratories. In this study, to uncover laboratory-specific variations of B. subtilis 168 

strains in Japan, I re-sequenced 11 B. subtilis 168 strains from nine laboratories including different 

source (BGSC-1A1) and analyzed how their genomes differed. 

 

Materials and methods 

Bacterial strains used in this study 

B. subtilis 168 strains used in this study are described in Fig. 2. Preparation of sequence 

grade DNA was performed at respective laboratories. 
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Library preparation and sequencing with Illumina Genome AnalyzerII 

Workflow from library preparation to sequencing is illustrated in Fig. 3. Sequenced 

libraries were prepared following the manufactures’ protocols. Briefly, 3 µg of genomic DNA was 

fragmented to an average length of 200 bp by the Covaris S2 system (Covaris, Woburn, MA). The 

fragmented DNA was repaired, a single A nucleotide was ligated to the 3' end, Illumina Index PE 

adapters (Illumina, San Diego, CA) were ligated to the fragments, and the sample was size-selected 

aiming for a 300-bp product with E-Gel SizeSelect 2% (Invitrogen, Grand Island, NY). The 

size-selected product was amplified by PCR for 18 cycles with primers InPE1.0, InPE2.0, and Index 

primer containing a unique-index tag for each individual sample. The final product was validated by 

Agilent Bioanalyzer 2100 (Agilent, Santa Clara, CA). Pooled libraries were sequenced on Illumina 

Genome Analyzer II following the manufactures’ protocols, generating 75- or 91-bp paired-end 

reads and 6-bp index tags. Sequence data were generated on two separate runs of an average size of 

300 Mb per sample. Details of the output data are given in Table 1. 

 

Implementation of NSAP 

 Architecture of NSAP is illustrated in Fig. 4. The NSAP analysis pipeline consists of three 

major steps: quality control of Illumina sequence files, primary analysis such as mapping analysis 

and de novo assembly, and secondary analysis such as statistics of mapping, detection of structure 

variation, and genome comparison of assembled sequences. NSAP is written in Ruby script language 

and runs on Linux systems. NSAP takes a recipe file that describes the analysis workflow in CSV 

format (Fig. 5). NSAP outputs an analysis report file that integrates results from various tools (Fig. 

6). 
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Bioinformatics analysis 

Sequence reads from each sample were analyzed using NSAP. In NSAP at first, quality 

control of sequence reads were performed. Then, sequence reads were mapped onto the B. subtilis 

168 reference genome (accession no. NC_000964.3), with BWA software (ver. 0.5.1)7 with default 

parameters. Possible variations (SNP/Indel) were listed using SAMtools software (ver. 0.1.9).8 To 

identify correct variations, I applied the following filtering criteria to the candidates: (i) The coverage 

at the non-reference allele of at least 5; (ii) Indels must meet an SNP quality threshold of 50 and 

substitutions must meet an SNP quality threshold of 20 (SAMtools assigns SNP quality, which is the 

Phred-scaled probability that the consensus is identical to the reference); (iii) variations must meet a 

mapping quality of 30 (SAMtools assigns Mapping quality, which is the Phred-scaled probability 

that the read alignment is wrong); (iv) percentage of sequence reads showing the variant allele must 

exceed 55%. The filtered lists of variations were annotated by COVA (comparison of variants and 

functional annotation) (developed in chapter II). To discover structural variations, I computed the 

average read depth within 1-kb windows and used BreakDancer software (ver. 0.0.1r81)9 with 

default parameters. 

 

Confirmation of variations with Sanger sequencing 

Genomic regions of 500-base around the SNPs and Indels detected by BWA and 

SAMtools were amplified by PCR and sequenced directly on a capillary sequencer by the Sanger 

method using the commercial sequence service of macrogen (Tokyo). The primers used are listed in 

Table 2. 
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Accession codes 

The raw sequence reads used in this study are available at the DDBJ Sequence Read 

Archive (DRA) under accession no. DRA000969. 

 

Results and Discussion 

 To facilitate re-sequencing analysis with multiple samples, I developed the NSAP pipeline 

and applied it for re-sequencing of B. subtilis laboratory strains. In order to reveal laboratory-specific 

variations among B. subtilis 168 strains in Japan, 11 B. subtilis 168 strains from nine laboratories 

including different source (BGSC-1A1) were re-sequenced and analyzed how their genomes differ 

using NSAP. The workflow of this study is illustrated in Fig. 7. 

 

Comparison of variations among the 11 B. subtilis 168 strains used in Japan 

Two B. subtilis 168 phyletic lines are used in Japan. One is the strains labeled 168, the 

another is those labeled BGSC-1A1, an independent isolate of the 168 strain is deposited in the 

Bacillus Genetic Stock Center (BGSC).10 The distribution of variations (SNPs, Indels and large 

deletions) detected in the strains is shown in Fig. 8. 

 The distribution of variations is clearly distinguished between the 168 and the BGSC 

strains. Compared with 168, the BGSC strains have additional variations. Despite the different 

sources of NAIST and BGSC, there were common variations among all strains, as well as unique 

variations in each strain. These common variations appeared not to be true variations, but sequencing 

errors of the reference sequence (see below). Compared with 168-C and its subculture of 168-C', an 

accumulation of variations was found in 168-C'. In 168-F, deletion of 48kb SKIN element was found. 

Details are discussed below. 
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 The numbers of detected variations in seven B. subtilis 168 strains are summarized in 

Table 3. The 168-A strain was distributed from Europe to the Japanese sequencing consortium about 

20 years ago, and 14 variations were found to be different from the updated reference sequence3 

(Table 4). All the variations of the 168-A strain were validated by Sanger sequencing. There are two 

possibilities to account for these discrepancies. One is that they reflect differences in the independent 

isolates (colonies) of the 168 strain. The second possibility is that errors remain in the updated 

reference sequence. Barbe et al. reported that the differences of isolates was 6 bases in the strain 

JH642, and 13 bases in case of the strain SMY.2 Thus, a dozen variations would arise from 

independent isolates (colonies) of the same strain. 168-A has approximately twice as many indels as 

the SNPs. When the old reference sequence of 1681 was updated by re-sequencing, 454 

pyro-sequencing and Illumina sequencing were used.3 Pyro-sequencing technology tends to miscall 

Indels in homopolymer runs. While erroneous Indels were tried being corrected by Illumina 

sequence reads, they may have remained. Since all variations of the 168-A strain were detected in all 

strains including different isolates of BGSC-1A1, it is likely that these 14 variations of 168-A were 

due to sequencing errors in the updated reference sequence.3 However, most of them detected in this 

study fell into the intergenic region, and thus had little influence on the annotations (Table 4). 

 

Genomic difference of B. subtilis 168 strains among laboratories in Japan 

To evaluate the divergence of 168 strains among the laboratories in Japan, further 

comparison of the variations in several strains was performed. While the distribution of variations in 

168-C was identical to that in 168-A, some strains have additional variations. The 168-B to 168-F 

strains have one to seven variations as compared to 168-A (Fig. 9). Especially, 168-C' which is a 

subculture of 168-C strain in the same laboratory, accumulated six variations. It has been reported 
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that two isolates of the B. subtilis JH642 strain differed by as few as six base pairs.2 The differences 

between 168-A and other the 168 strains are of the same magnitude. These variations might be 

caused by differences in storage conditions in the laboratories or differences among colonies of the 

original stock. 

The laboratory-specific variations include two intergenic changes, five synonymous 

(silent) changes, three frame-shift changes, and eight missense mutations (Table 5). Frame-shift 

changes occurred in phoA, opuD, and yqxJ, whose functions are alkaline phosphatase, glycine 

betaine transporter, and unknown respectively. Missense mutations are found in cspR, wprA, dppE, 

topA, yosH, ywfH, yxzC, and tetB. cspR is an essential gene that encodes putative rRNA methylase.11 

wprA and dppE are localized in the cell membrane. They encode a cell wall-associated protease12 

and a dipeptide ABC transporter,13 respectively. topA is perhaps important for DNA topology.14 

yosH and ywfH are of unknown function. ywfH (bacG) involves the biosynthesis of the antibiotic 

bacilysin.15 tetB involves resistance to tetracycline.16 The phenotypic differences resulting from these 

variations have not been examined, and it remains possible that there are phenotypic differences from 

168-A. Moreover, deletion of a 48-kb SKIN region was found in the 168-F strain from the 

read-depth plot (Fig. 10 A, B). The shape of the read-depth plot also indicated a difference in growth 

conditions. In 168-A, an almost flat shape indicated that the cells were in the stationary phase. On the 

other hand, in 168-F, the ratio of sequence reads around the origin region was approximately 2-fold 

higher than of the terC region, indicating that the cells were in the log phase. The SKIN element 

interrupts a gene encoding a sporulation-specific sigma factor, SigK. When cells enter developmental 

phases, the SKIN element is excised from the genome only in the mother cell, allowing its flanking 

regions to join and form a complete gene, and thus turns on sporulation genes (Fig. 10 C).17 However, 

some of the other isolates maintained in laboratory-F were found to retain the SKIN element (data 
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not shown). These results indicate a small amount of heterogeneity in the same laboratory. 

 

Genomic divergence of B. subtilis 168 (BGSC-1A1) strains among laboratories in Japan 

The 168 strain distributed to the sequencing consortium was the one conserved by C. 

Anagnostopoulos.3 On the other hand, BGSC-1A1 is an independent isolate of the same 168 strain 

that was deposited in BGSC in the mid 1970s by James Shapiro through P. Shaeffer and A.L. 

Sonenshein (Fig. 2).18 With an old version of reference sequence,1 Srivatsan et al. compared 168 

between BGSC-1A1 strains, and reported 31 variations.2 This accumulation of variations in 

BGSC-1A1 is compatible with the fact that BGSC-1A1 had a longer strain history than the 168 

strain. With updated reference sequence of 168, 53-62 variations were found (Table 6). Excluding 14 

variations considered sequencing errors in the reference sequence,3 there were 33 common variations 

among the four strains of 1A1, corresponding closely to the early study (Table 7).2 After excluding 

the common variations among the four strains of 1A1, each strain had 5-14 variations (Table 8). 

 

Conclusion 

 In this study, I developed NSAP and applied it to re-sequence B. subtilis 168 strains 

including different isolates (BGSC-1A1), and the base variations among laboratories were identified. 

The differences in strain 168 among laboratories were few, some strains had unique variations and 

may have a hidden phenotype. These variations might have been caused by differences in storage 

conditions in the laboratories or differences among colonies of the original stock. Based on these 

results, it is necessary to understand the genetic differences between the wild-type (parental) strain at 

each laboratory and the reference strain by re-sequencing analysis, and to pay more attention in 

managing laboratory strains. Also NSAP successfully demonstrated the dramatical reduction of time 
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for bioinformatical analysis. 
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Figure 1. Workflow of bioinformatical analysis for detection of mutation 
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Figure 2. History of Bacillus subtilis 168 strain used in Japan 

The B. subtilis 168 conserved by C. Anagostopoulos was distributed to the EU sequencing 

consortium in the late 1980s. This strain was distributed to the Japanese sequencing 

consortium via Ogasawara’s laboratory at Nara Institute of Science and Technology (NAIST) 

in the early 1990s. Re-sequenced strains in this study are surrounded by red frames. These 

strains were provided by the following laboratories: 168-A, NAIST, Ogasawara’s laboratory; 

168-B, Kobe University, Yoshida’s laboratory; 168-C and C', Saitama University, Asai’s 

laboratory; 168-D, Hosei University, Sato’s laboratory; 168-E, Tokai University, Ogura’s 

laboratory; 168-F, Tokyo University of Agriculture, Yoshikawa’s laboratory; BGSC-C, 

Saitama University, Asai’s laboratory; BGSC-G, Shinshu University, Sekiguchi’s laboratory; 

BGSC-H, University of Tsukuba, Yamane’s laboratory; BGSC-I, Keio University, Itaya’s 

laboratory. 168-C' is a subculture of 168-C. 
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Figure 3. Workflow of re-sequencing analysis from sample preparations to sequencing on 

Illumina sequencer 
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Table 1. Summary of mapping analysis of 11 B. subtilis laboratory strains 

 

Strain 
Read length 

(bp) 

Number of 

total reads 

Total read 

bases (Mb) 

% of 

mapped 

reads 

% of 

properly 

paired 

Unmapped 

region (bp) 

% of 

covered 

genome 

Genomic 

coverage 

168-A 75 3,102,870 232 97.93 91.14 179 99.99 54 

168-B 75 2,302,398 172 98.17 95.06 213 99.99 40 

168-C 75 3,134,327 235 97.94 92.31 193 99.99 55 

168-C' 75 3,942,439 295 98.31 95.22 173 99.99 69 

168-D 75 4,146,924 311 97.36 90.85 182 99.99 72 
168-E 75 4,071,253 305 97.46 91.25 160 99.99 71 

168-F 75 3,985,900 298 97.48 92.27 45,304 98.85 70 

BGSC-G 75 4,887,851 366 98.77 97.85 187 99.99 86 

BGSC-H 91 3,392,281 308 99.04 98.62 225 99.99 73 

BGSC-C 75 6,463,954 484 97.56 93.55 163 99.99 112 

BGSC-I 75 4,100,055 307 98.07 92.56 178 99.99 72 
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Figure 4. Architecture of NSAP 

The NSAP analysis pipeline consists of three major steps: quality control of Illumina 

sequence files, primary analysis such as mapping analysis and de novo assembly, and 

secondary analysis such as statistics of mapping, detection of structure variation, and genome 

comparison of assembled sequences. NSAP pipeline (surrounded by the red broken line) 

includes various third-party software tools (names in blue text). NSAP takes three types of 

input files: Illumina sequence files, reference files used in mapping analysis, and a recipe file 

that describes the analysis workflow in CSV format. One software tool highlighted by red 

(COVA) was developed for an annotation of variants described in chapter II. 
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Figure 5. Example of a recipe file 

A CSV-fomatted recipe file specifies what analysis should be done for each sample. The 

above example shows the recipe file for mapping analysis. ‘Project Dir’ specifies the root 

directory of an analysis project. ‘Ref name’ and ‘Ref dir’ specify a path to the directory 

including reference sequences. ‘Seq name’, ‘Read1’, and ‘Read2’ specify a name and file 

names of fastq files. ‘fastx_clipper’, ‘fastx_trimeer’, and ‘OnlyRead1’ columns specify 

parameters for preprocessing of sequence files. ‘Mapping’, ‘Key’, and ‘Value’ columns 

specify parameters for mapping analysis. 
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Figure 6. Example of an analysis report 

The uppermost section of this report describes a total length of sequenced base for each 

sample. The second section ‘Result of maq’ describes a statistics of mapping analysis using 

MAQ. The third section ‘Result of BreakDancer’ describes a number of detected structural 

variants using BreakDancer. The lowermost section ‘Result of velvet’ describes a statistics of 

de novo assembly using velvet. 
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Table 2. Primers used in this study 

 

Position Sequence 

1317152F ATATAGAAAACGGACAGCCCG 

1317152R ATTTAATGCTGACAATGAGAACG 

2097080F AGTATGAAGCACTGCTGGCAC 

2097080R AAGACGGAACTTATGGCGTG 

2271424F TCATATCTCCAACGTGCAATG 

2271424R ATGTCACCGGCAGAGTCC 

2480646F AGGACATTCCGATGAACCTG 

2480646R CTGAGCTTGACAACCTGCTTC 

2581726F AGAACCGCCAGCTTGTACC 

2581726R TACGACGCTTGTGGCTTATG 

3770058F ATTGCCATTAACTCCGCATC 

3770058R GGCTGGCGATATACAAGGTG 

3935822F TGGCATTCTGAGCATAGCAG 

3935822R ACAAGCTGGATTACGAAGCG 

4155390F GGTGTCTTAACCGCTTGACC 

4155390R TTGACGTCCTAGCAGGAATTG 

557865F CCTCGTCTGAGGAATCTTGG 

557865R CAATTGATTATATAAGCTGTAATCTCC 
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Figure 7. Workflow of this study 

For the bioinformatical analysis, I used two software tools which were developed by myself, 

NSAP and COVA. COVA was designed for an annotation of variations described in chapter 

II. 
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Figure 8. Comparison of variations among the 11 B. subtilis 168 strains used in Japan. 

11 B. subtilis 168 strains from nine laboratories (A-H), including BGSC stock strains (BGSC-1A1), were sequenced. The genomic positions of 

identified variations against the B. subtilis 168 published genome2 are shown. 
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Table 3. Numbers of variations in 7 B. subtilis 168 strains compared to the 168 reference sequence 

 

Variation type 168-A 168-B 168-C 168-C' 168-D 168-E 168-F 

SNP 5 6 5 9 5 12 8 

Insertion 6 6 6 7 7 6 6 

Deletion 3 3 3 4 4 3 4* 

Total 14 15 14 20 16 21 18 

Intergenic 11 11 11 12 12 12 12 

Synonymous 2 2 2 3 2 5 18 

Non-synonymous 1 2 1 5 2 4 3 

All strains were compared to the 168 reference sequence.3 Numbers in parentheses show differences between a given strain and 168-A. 

* Include one large deletion. 
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Table 4. Base difference between 168-A strain and the published sequence 

 

Position Reference base Variant base Gene Amino acid change Product 

557866 - +T 

   1317152 - +CTT * 

   2097081 - +A 

   2271424 T C uvrX Silent lesion bypass phage DNA polymerase 

2271505 C T uvrX Silent lesion bypass phage DNA polymerase 

2271523 A C uvrX D45E lesion bypass phage DNA polymerase 

2480646 T A 

   2480647 A T 

   2480654 - -T 

   2480667 - -T 

   2581727 - +T 

   3770059 - +A 

   3935823 - -T 

   4155391 - +A �  

 

�  

All strains were compared to the 168 reference sequence.3 *BWA and SAMtools called this variation as +GT, but the sangar sequencing showed 

+CTT variation. 
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Figure 9. Numbers of laboratory specific variations in 6 B. subtilis 168 strains compared to 

the 168-A strain. All strains were compared to the 168 reference sequence.3 Variations were 

categorized as snp, insertion, and deletion. When they changed amino acid, they were also 

counted as a non-synonymous variation. 
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Table 5. Base difference between 168-A strain and other 168 strains 

Position Reference 
base Variant base Gene Amino acid 

change Product Strains 

608215 - +A 
   

168-C', 168-D 
728638 G A 

   
168-E 

970381 A G cspR T83A putative rRNA methylase 168-E 
1017379 - -T phoA Freamshift alkaline phosphatase A 168-C' 
1155476 G A wprA G563D cell wall-associated protease 168-E 
1365685 C T dppE A512V dipeptide ABC transporter (dipeptide-binding lipoprotein) 168-E 
1684981 A G topA T441A DNA topoisomerase I 168-F 
2167227 C A yosH D95Y conserved hypothetical protein; phage SPbeta 168-C' 
2471230 C A yqjQ Silent putative metabolite dehydrogenase, NAD-binding 168-F 
2653334 - Large deletion 

   
168-F 

2663872 - -T yqxJ Freamshift hypothetical protein; skin element 168-D 
3078342 - -A opuD Freamshift glycine betaine transporter 168-F 

3289616 C T dhbE Silent 
2,3-dihydroxybenzoate-AMP ligase (enterobactin synthetase 
component E) 168-E 

3616986 C T yvkC Silent putative phosphotransferase 168-E 

3842515 A G albG Silent 
putative integral inner membrane protein involved in subtilosin 
production and immunity 168-E 

3867950 C T ywfH T153I carrier protein reductase of bacilysin synthesis 168-C' 
4022239 G A yxzC T9I putative nucleic acid binding protein 168-B 
4163904 C A yybT Silent putative phosphodiesterase 168-C' 

4188797 C T tetB M87I 
multifunctional tetracycline-metal/H+ antiporter and 
Na+(K+)/H+ antiporter 168-C' 
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Figure 10. The number of sequencing reads at each genomic position for each strain. 

A) Coverage was obtained by calculating the average number of sequence reads in a given 1-kb window. B) A magnification of deleted region in 

168-F. C) This deleted region includes skin element. The SKIN element is excised from the genome in the developmental phases. Two separated 

genes (spoIVCB and spoIIIC) are fused and act as a sigK gene that turns on sporulation genes. 
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Table 6. Numbers of variations in four B. subtilis 168 (BGSC-1A1) strains compared to the 

168 reference sequence 

 

Variation type BGSC-C BGSC-I BGSC-G BGSC-H 

SNP 36 36 33 43 

Insertion 7  7 7 7 

Deletion 10 10 11 10 

Total 53 53 51 60 

Intergenic 23 23 21 23 

Synonymous 8 8 9 10 

Non-synonymous 23 23 21 23 

All strains were compared to the 168 reference sequence.3 
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Table 7. Base difference between BGSC-1A1 strain and the 168 published sequence 

Position Reference 
base 

Variant 
base Gene Amino acid 

change Product 

376018 - -G 
   774698 - -A yesY Freamshift rhamnogalacturonan acetylesterase 

1073873 - -T 
   

1224524 T G oppD V357G 
oligopeptide ABC transporter 
 (ATP-binding protein) 

1264284 T A yjcM K216N hypothetical protein 
1412484 T G sigI L198R putative RNA polymerase sigma factor SigI 
1424639 T G 

   1610896 T C sepF M11T cell division machinery factor 
1618068 C T rluD P287S pseudouridylate synthase 
1675849 C T trmD H227Y tRNA (guanine-N(1)-)-methyltransferase 
1741604 - -G 

   1756603 G A ymfD A319T putative multidrug resistance protein 
1841169 - +A pksN Freamshift polyketide synthase of type I 
2011091 G A gltA A1181V glutamate synthase (large subunit) 
2041099 A G yozT Silent hypothetical protein 
2096246 - -A 

   2174752 - -CT 
   2201408 A G yoqA L23P hypothetical protein; phage SPbeta 

2421606 T C rluB Silent pseudouridine synthase 
2619105 C T yqeZ Silent putative membrane bound hydrolase 
2814468 C T 

   2814468 C T 
   2893906 G A ilvC Silent ketol-acid reductoisomerase 

2982417 T A 
   2982437 T C 
   

3051461 G A ytpS P375S 
putative DNA translocase stage III sporulation 
protein (modular protein) 

3253956 T C comP E628G two-component sensor histidine kinase 
3319154 C T yutE A37T hypothetical protein 
3391676 A G gerAA T299A component of the GerA germination receptor 
3527377 G A epsC A276V putative UDP-sugar epimerase 

3696869 T C pgdS Silent 
gamma-DL-glutamyl hydrolase 
 (PGA depolymerase) 

3902306 C A sacA L448F sucrase-6-phosphate hydrolase 
4095811 C T yxbD V9I putative acetyltransferase 

All strains were compared to the 168 reference sequence.3 
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Table 8. Uncommon bases in four BGSC-1A1 strains 

 

Position 
Reference 

base 
Variant base Gene 

Amino acid 
change 

Product Strains 

52646 C T 
   

BGSC-C, BGSC-I, BGSC-H 
59322 G A ctc Silent 50S ribosomal protein L25/general stress protein Ctc BGSC-G 

711442 C G 
   

BGSC-H 
716752 G C 

   
BGSC-H 

999969 C G 
   

BGSC-H 
1073117 C A hpr V201L transcriptional regulator Hpr BGSC-C, BGSC-I, BGSC-H 
1347835 C T xlyA Silent bacteriophage PBSX N-acetylmuramoyl-L-alanine amidase BGSC-G 
1576599 A G ylbO Silent putative spore coat protein regulator protein YlbO BGSC-H 
1741658 - -T ylxY Freamshift putative sugar deacetylase BGSC-G 
1764558 C T 

   
BGSC-C, BGSC-I, BGSC-H 

1937879 G C 
   

BGSC-H 
1938140 - -T ynfC Freamshift hypothetical protein BGSC-G 
2366016 T C ypiB H87R hypothetical protein BGSC-C, BGSC-I, BGSC-H 
2546154 - -C gcvPB Freamshift glycine dehydrogenase subunit 2 BGSC-C, BGSC-I 
2560902 C T yqxL E181K putative CorA-type Mg(2+) transporter BGSC-C, BGSC-I, BGSC-H 
2865030 - -AATTC comC Freamshift membrane protease and transmethylase BGSC-H 
2903194 G C 

   
BGSC-H 

3618957 G A 
   

BGSC-G 
3865745 A G pta Silent phosphotransacetylase BGSC-H 
3993539 G T yxjM Silent two-component sensor histidine kinase [YxjL] BGSC-C, BGSC-I, BGSC-H 

All strains were compared to the 168 reference sequence.3 
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CHAPTER II 

 

Development of a variant annotation software and its application to re-sequencing of the 

mutagenized yeast 

 

Abstract 

A novel mutagenesis technique using error-prone DNA polymerase δ (polδ), based on the 

disparity mutagenesis model of evolution, has been successfully employed to generate novel 

microorganism strains with desired traits. However, little else is known about the spectra of mutagenic 

effects caused by disparity mutagenesis. In this study, the performance of the polδMKII mutator, 

which expresses the proofreading-deficient and low-fidelity polδ, was evaluated in Saccharomyces 

cerevisiae haploid strain. It was compared with that of the commonly used chemical mutagen ethyl 

methanesulfonate (EMS). This mutator strain possesses exogenous mutant polδ supplied from a 

plasmid, thereby leaving the genomic one intact. The mutation rate achieved by each mutagen was 

measured and high-throughput next generation sequencing with Illumina GAII was performed. To analyze 

the genome-wide mutation spectra produced by the 2 mutagenesis methods, I developed a variant 

annotation software, COVA (comparison of variants and functional annotation). The mutation 

frequency of the mutator was approximately 7 times higher than that of EMS. The strong G/C to A/T 

transition bias of EMS was confirmed, whereas it was found that the mutator mainly produces 

transversions, giving rise to more diverse amino acid substitution patterns. This study demonstrated that a 

proofreading-deficient and low-fidelity polδMKII mutator is a useful and efficient method for rapid 

strain improvement based on in vivo mutagenesis. Also COVA has successfully reduced the time for 

procedure of variant annotation, compared with manual annotation. 
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Introduction 

Random mutagenesis is a powerful tool for generating enzymes, proteins, metabolic pathways, or 

even entire genomes with desired or improved properties.1 Due to the technical simplicity and applicability to 

almost any organism, chemical or radiation mutagenesis is frequently used for the generation of genetic 

variability in a microorganism. However, these methods tend to be inefficient, because they can cause 

substantial cell damage when performed in vivo.2 

A novel mutagenesis technique using error-prone DNA polymerase δ (polδ), based on the 

disparity mutagenesis model of evolution,3 has been successfully employed to generate novel 

microorganism strains with desired traits.4-11 In the disparity model, mutations occur preferentially on 

the lagging strand, due to the more complex, discontinuous DNA replication that takes place there 

(Fig. 1). Computer simulation shows that the disparity model accumulates more mutations than the 

parity model, in which mutations occur stochastically and evenly in both strands.3 In addition, the 

disparity model produces greater diversity because some offspring will have mutant DNA while 

some offspring will have non-mutated, wild-type DNA. 

Several studies have shown that the disparity mutagenesis method often achieved more 

satisfactory results (i.e., higher mutation rate and quick attainment of the desired phenotype) than conventional 

methods such as the chemical mutagen, ethyl methanesulfonate (EMS),5,10 which is known to produce 

mainly G/C to A/T transitions.12 However, little else is known about the spectra of mutagenic effects 

caused by disparity mutagenesis. 

 polδ is involved in the synthesis of the lagging strand of DNA.13 Several mutants, 

including the proofreading-deficient pol3-01 strain and several low fidelity mutants, have been 

shown to elevate the mutation rate.14-18 To generate the strains with the greatest mutagenicity, 

Neo-Morgan Laboratory (Kanagawa, Japan) has developed the plasmid YCplac33/polδMKII, 
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expressing the polδ mutant allele with 2 mutations: one mutation to inactivate the proofreading 

activity (D321A and E323A)15 and another mutation to decrease the fidelity of replication 

(L612M).14,17,18 

With the recent advent of next-generation sequencing technologies, an accurate 

characterization of the mutant genome, relative to the parental reference strain, is now achievable. In 

fact, Flibotte et al. have analyzed the mutation spectra induced by various mutagens, such as EMS, 

ENU, and UV/TMP, in the whole genome of Caenorhabditis elegans.12 Another group has also used 

these sequencing technologies to analyze the genetic variations between a parental and 

EMS-mutagenized strain of yeast.19 

To evaluate the effect of detected mutations on genome, it needs a variant annotation such 

as a substitution of amino acid. Although there have been dozens of software for sequencing reads 

alignment and variant identification, only few software for functional annotation of variants for 

bacteria are available, and few tools can compare variants among multiple samples. Thus, I 

developed the software COVA (comparison of variants and functional annotation). COVA can 

annotate variations such as a single base substitution, an insertion, a deletion, and a structural 

variation. In addition, COVA also can compare variants among samples, which can help to pinpoint 

effective variant(s). 

 In this study, I applied COVA to evaluate the performance of the polδMKII mutator, 

which expresses the proofreading-deficient and low-fidelity polδ, in Saccharomyces cerevisiae haploid 

strain. It was compared with that of the commonly used chemical mutagen ethyl methanesulfonate 

(EMS). This mutator strain possesses exogenous mutant polδ supplied from a plasmid, thereby 

leaving the genomic one intact. The mutation rate of this mutator strain was measured and it was found 

that the mutation frequency of polδMKII was approximately 7 times higher than that of EMS. Also 
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high-throughput next generation sequencing with Illumina GAII was performed to analyze the genome-wide 

mutation spectra produced by the 2 different mutagenesis methods. It was uncovered that the mutator strain 

exhibited more pleiotropy and gave rise to more diverse amino acid substitution patterns. This study has 

demonstrated that a proofreading-deficient and low-fidelity polδMKII mutator is a useful and 

efficient method for rapid strain improvement based on in vivo mutagenesis. This mutator is also 

useful for studying the acceleration of evolution. 

 

Materials and Methods 

Construction of plasmid vectors 

Plasmid YCplac33/polδMKII was constructed as follows: a 4.8 kb DNA fragment 

containing the S. cerevisiae BY2961 pol3 gene, plus the UTR 1 kb upstream and 0.5 kb downstream, 

(Matα ura3-52, his3-Δ300, trp1-Δ901, leu2-3, 112 lys2-801, ade2-2) was inserted into the 

SalI-EcoRI site of YCplac33, and 3 amino acid substitutions, D321A, E323A, and L612M, were 

introduced into the pol3 gene using site-directed mutagenesis.20 YCplac33 is low-copy number 

plasmid and is stably maintained in S. cerevisiae.20 

 

Mutagenesis with mutator 

YCplac33/polδMKII vector (and YCplac33 empty vector as non-mutator control) was 

introduced into S. cerevisiae BY2961 strain cells using the LiCl method, and the transformants 

(mutator strains) were selected on synthetic complete (SC)-agar plates without uracil. Five mutator 

strains were picked and independently cultivated in 1 ml SC medium at 30ºC for 24 h (about 30 

generations) in order to introduce mutations into their chromosomes. To determine the mutation 

frequencies of the 5 mutator strains, aliquots were spread on SC-agar plates containing L-canavanine 
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sulfate salt (0.06 mg/ml) (Sigma, St. Louis, MO, USA) to identify CAN1 mutants and incubated until 

resistant colonies were formed. The mutation frequencies were calculated as the number of drug 

resistant colonies divided by the number of colonies on SC-agar plate without drug. Forward 

mutation rates at CAN1 were determined by fluctuation analysis using these 5 independent cultures.21 

In order to fix mutations, another aliquot of the mutator culture was spread on SC-agar plates 

containing 5-fluoroorotic acid monohydrate (Wako) to obtain de-mutatorized cells curing from 

YCplac33/polδMKII vector. The genomic DNA was prepared from the de-mutatorized cells using 

the procedure described in the following section. 

 

Mutagenesis with EMS 

S. cerevisiae BY2961 strain cells were suspended in 0.1 M phosphate-buffered saline 

(PBS) (pH 7.0) containing 1.5, 2.0, 2.5, or 3.0% ethyl methanesulfonate (EMS), and were incubated 

at 30ºC for 1 h to introduce chromosomal mutations. The cells were washed 3 times with 5% sodium 

thiosulfate, suspended in sterilized water, and spread on SC-agar plates containing L-canavanine 

sulfate salt (0.06 mg/ml) (Sigma) to identify CAN1 mutants. The mutation frequencies were 

calculated as described above. Another aliquot of the EMS-treated cell suspension was spread on a 

YPD-agar plate to isolate single clones. The genomic DNA was prepared from 5 single clones 

derived from the cells treated with 1.5% EMS using the procedure described in the following section. 

 

Library preparation and sequencing with Illumina Genome AnalyzerII 

The genomic DNA from S. cerevisiae was extracted using the DNeasy Blood and Tissue 

kit (Qiagen, Valencia, CA, USA). Each sequenced sample was prepared according to the Illumina 

protocols. Briefly, 3 µg of genomic DNA was fragmented to an average length of 200 bp by using 
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the Covaris S2 system (Covaris, Woburn, MA, USA). The fragmented DNA was repaired, a single 

�A� nucleotide was ligated to the 3� end, Illumina Index PE adapters (Illumina, San Diego, CA, 

USA) were ligated to the fragments, and the sample was size-selected for a 300 bp product using 

E-Gel SizeSelect 2% (Invitrogen, Grand Island, NY). The size-selected product was amplified by 18 

cycles of PCR with the primers InPE1.0, InPE2.0, and the Index primer containing 6-nt barcodes 

(Illumina). The final product was validated using the Agilent Bioanalyzer 2100 (Agilent, Santa Clara, 

CA, USA). 

The 11 barcoded libraries (the parental strain BY2961, 5 colonies from the mutator strain, 

and 5 colonies from the EMS-treated strain) were used for cluster generation in several multiplexed 

flowcell lanes in the Illumina Genome Analyzer II system. Ninety-one cycles of multiplexed 

paired-end sequencing was performed, running phi X 174 genomic DNA as a control in a separate 

lane of the flow cell. After the sequencing reactions were complete, Illumina analysis pipeline 

(CASAVA 1.6.0) was used to carry out image analysis, base calling, and quality score calibration. 

Reads were sorted by barcode and exported in the FASTQ format. 

 

Sequencing and Bioinformatics analysis 

Sequence reads from each sample were analyzed using NSAP. In NSAP at first, quality 

control of sequence reads were performed. Once the raw sequence data were curated, the reads of 

each sample were aligned to the S288c reference genome (http://www.yeastgenome.org/) using the 

BWA software (Ver. 0.5.1) with default parameters.22 To avoid false positives and mutations from 

repetitive regions, I removed repetitive reads from the alignment files. I then used the SAMtools 

software (Ver. 0.1.9)23 to produce the lists of mutations. To identify mutations that were produced by 

mutagenesis, I applied the following filtering criteria to the lists of mutations: (a) The coverage at the 
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mismatch positions should be at least 10; (b) The variant is not present in the sequenced parental 

strain; (c) Indels meet a SNP quality threshold of 50 and substitutions meet a SNP quality threshold 

of 20 (SAMtools assigns SNP quality, which is the Phred-scaled probability that the consensus is 

identical to the reference); (d) Samples meet a mapping quality of 30 (SAMtools assigns Mapping 

quality, which is the Phred-scaled probability that the read alignment is wrong); (e) The percentage 

of reads showing the variant allele exceeds 90%. A variant must pass this filter to be considered a 

mutation. Alignments of all mutations were inspected by Integrative Genomics Viewer (IGV).24 

 

Implementation of COVA and annotation of mutations 

For annotation of mutations, I have developed the software, COVA (comparison of 

variants and functional annotation). The lists of mutations detected in this study were annotated using 

COVA. COVA is a Ruby-based tool for variant comparison and functional annotation, especially 

useful for bacterial mutation analysis. Workflow of COVA is illustrated in Fig. 2. COVA can 

annotate single nucleotide variants (SNVs), insertions/deletions (InDels) and other types of variants 

such as structural variations and coverage of genes. COVA is freely available at 

http://sourceforge.net/projects/cova/ 

The input file of variant list is obtained after step of variant calling. COVA can annotate 

the following variant file format: SAMtools-pileup, VCF, MAQ, BreakDancer, and GFF3 formatted 

coverage of gene generated by coverageBed. COVA can utilize annotation data sets conforming to 

Genbank Format which is easily downloadable from NCBI website. 

COVA generates five types of output table files. The first file contains annotation for all 

variants (SNP/InDel), such as type and probability of variant, mutational spectrum, and its effect on 

the gene. The second file is a comparison table of variants (SNP/InDel) among multiple samples, 
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which helps to pinpoint causal variation(s) relating to phenotype (Fig. 3). The third file is a 

comparison table of structural variants among multiple samples, which helps to pinpoint causal 

variation(s) relating to phenotype. The forth file is a comparison table of gene coverage among 

multiple samples, which helps to find deletion of genes. The fifth file is a summary table of number 

of variants in each sample. 

 

Accession codes 

The raw reads used in this study are available on the DDBJ Sequence Read Archive 

(DRA) under accession number DRA000522. 

 

Results 

Comparison of mutation frequencies 

In this study, the performance of the polδMKII mutator, which expresses the 

proofreading-deficient and low-fidelity polδ, in the S. cerevisiae haploid strain, was compared with that 

of the commonly used chemical mutagen EMS. The workflow of this study is illustrated in Fig. 4. 

To assess EMS efficiency, S. cerevisiae BY2961 cells were treated with different concentrations of 

EMS. The lethality and mutation frequencies of the canavanine resistant colonies are shown in Table 

1. At an EMS concentration of 1.5%, the mutation frequency was approximately 18-fold higher than 

that in the control (untreated) strain. Above 2.0% EMS, the survival rate decreased with no increase 

in mutation frequency. Based on this result, cells treated with 1.5% EMS were used for 

whole-genome sequencing. 

To assess the effectiveness of the mutator, the haploid BY2961 strain was transformed with a 

yeast expression plasmid, YCplac33/polδMKII, expressing the polδ mutant allele containing both the 
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mutation to inactivate the proofreading activity (D321A and E323A) and the mutation to decrease 

the fidelity of replication (L612M). The mutator strain harboring the YCplac33/polδMKII plasmid 

will be referred to from here on as “mutator.” The mutation frequency by resistance to canavanine 

was determined. As summarized in Table 2, the mutation frequency of the mutator was 

approximately 132-fold higher than in the cells containing the empty vector. The forward mutation 

rate at the CAN1 (arginine permease) locus was calculated to be 7.9 × 10-6 /cell division. These results 

show that the plasmid-generated mutated polδ protein effectively competes with the endogenous 

wild-type polδ protein that is produced from the chromosome, and the semi-dominant negative 

expression of mutated polδ was effective in introducing mutations. These results also demonstrate 

that the mutation frequency of the mutator was approximately 7 times higher than that of EMS. 

 

Comparison of number of mutations introduced by mutagenesis 

To analyze the genome-wide mutation spectra of the 2 different mutagenesis methods, I 

implemented a parallel sequencing approach with the Illumina Solexa technology (GAII instrument). 

I sequenced the parental haploid strain BY2961, each of the 5 clones from the mutator strains, and 

each of the 5 clones from the EMS-treated strains under non-selective conditions. Using NSAP 

developed in chapter I, sequencing reads were aligned to the S288c reference genome using the 

BWA software.22 To avoid false positives due to mutations from repetitive regions, reads mapped to 

multiple locations were discarded and only uniquely mapped reads were used for subsequent analysis.  

In the current study, the average genomic coverage ranged from 32× to 87× (Table 3). On 

average, 94.18% of the S288c reference genome was covered with at least 1 uniquely mapped read 

at each base. Subsequently, I analyzed the data for 2 kinds of mutational events: single nucleotide 

variants (SNVs), and small insertions and deletions (Indels). Illumina sequencing found 6,766 
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genetic differences between our parental strain BY2961 and the S288c. Mutations induced by these 

mutagens were identified by subtracting the parental mutations and analyzed using COVA. 

Sequence processing details can be found in the Materials and Methods. 

 

Comparison of the mutational spectra introduced by mutagenesis 

I compared the average number of mutations between mutator strains and 

EMS-mutagenized strains (Fig. 5). Mutator produced fewer SNVs than EMS (7.2 versus 55.8 per 

strain, respectively, p < 0.05). Mutator and EMS produced few deletions (1.6 versus 2.8 per strain, 

respectively), as well as few insertions (0.2 versus 0.6 per strain, respectively). An average of 1.14 × 

107 nucleotide sites fulfilled our criteria of read depth (≥10), with an average base-substitutional 

mutation rate estimate of EMS: 4.87 (SE = 1.34) × 10-6 per site, Mutator: 2.09 (0.55) × 10-8 per site 

per cell division (about 30 generations). The rate calculated for the mutator is 100-fold higher than 

the previously reported spontaneous mutation rate, 3.3 (0.8) × 10-10, based on 454 analyses of 4 

mutation-accumulation (MA)-lines.25 The 2 mutagens generate mutations that are distributed 

similarly across the various gene features, although the mutator did produce more SNVs within 

exons than did EMS (Fig. 6).  

The mutation spectra are shown in Fig. 7A. In the genome-wide profile, it was found that 

the mutator primarily induced transversions (72%), while EMS primarily induced transitions (97%), 

well in accord with the known mutagenic specificity of EMS.12 Similarly, the mutator primarily 

induced transversions (69%) in the non-synonymous substitutions in exons (Fig. 7B), similar to what 

has been seen in pol3-01 study using URA3 reporter gene.16 EMS treatment was also in agreement 

with the genome-wide spectra, induced transitions with a prevalence of 98%. 
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Comparison of amino acid substitution patterns 

The mutation spectra of a given mutagenesis method influences the repertoire of changed 

amino acids at the protein level and it was able to evaluate the amino acid substitution patterns 

generated by our 2 protocols (Table 4). Initially, mutations were classified into those that preserved 

the corresponding amino acid, changed the amino acid, or generated a stop codon. A clear difference 

was seen between mutator and EMS. Of the total mutations, the mutator changed the amino acid in 

approximately 85%, whereas EMS changed the amino acid in approximately 61%. The mutator also 

generated more stop codons than EMS (7% versus 2%, respectively). While mutator generated more 

changes to the first or second nucleotide of the codon, EMS generated changes in all 3 positions in 

approximately equal proportions. 

Amino acid changes were classified into conservative and nonconservative substitutions, 

where a conservative substitution changed the encoded amino acid to a similar amino acid according 

to the criteria of the BLOSUM62 matrix.26 Of the amino acid changes, mutator produced more 

nonconservative substitutions than EMS (83% and 53%). For the comparison of random 

mutagenesis methods, Wong et al.27 proposed a useful structure indicator that takes into account Gly 

and Pro substitutions as well as stop codons. In our study, the mutator produced an equivalent 

number of Gly/Pro and stop codon substitutions, whereas EMS generated only stop codon 

substitutions. 

 

Discussion 

In this study, the performance of a novel mutagenesis technique using error-prone 

proofreading-deficient and low-fidelity DNA polymerase δ was evaluated by determining the 

mutation rate of the strain harboring the enzyme. I also analyzed the spectra of mutations across the 
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entire S. cerevisiae genome using COVA developed in this study. Then I assessed the diversity of 

mutation types at the amino acid level. 

 

Mutational rate of polδMKII mutator 

Proofreading-deficient polδ mutants, such as pol3-01 strain, and several low-fidelity polδ 

mutants, such as L612M, have been shown to present a mutator phenotype and to elevate the 

mutation rate.14-18 A BY2961 strain expressing a polδMKII mutator was generated. This mutator has 

polδ mutant allele containing a combination of mutations to inactivate the proofreading activity 

(D321A and E323A) and to decrease the fidelity of replication (L612M). This mutant allele acts as a 

strong mutator, as evidenced by the high frequency of spontaneous mutations (131-fold over control, 

compared to 18-fold for EMS strains). Vencatesan et al. reported the forward CAN1 mutation rates of 

polδ mutants as 1.5 × 10-6 in L612M, and 5.6 × 10-6 in pol3-01.18 These mutant strains were 

constructed by integrating the pol3-01 or pol3-L612M allele into the chromosomal POL3 gene by 

targeted integration, thereby disrupting the endogenous POL3 gene. In contrast, our mutator plasmid 

expressing the polδ mutant allele produced a mutation rate of 7.9 × 10-6, which shows a high 

mutation rate as well as chromosomal integration. The use of the polδMKII mutator plasmid allows 

the continued expression of the endogenous wild-type POL3 and provides for an efficient restoration 

of the wild-type mutation rate by curing the yeast strains of the mutator plasmid. Once the desired 

trait(s) has been selected, curing the cells from the mutator plasmid can stabilize the newly obtained 

phenotype. 

 

Mutational spectra of polδMKII mutator 

In general, all random mutagenesis methods developed to date are biased toward 
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transition mutations, although efforts have been made to overcome this.28 While transition bias was 

observed in EMS, transversion bias with the mutator was actually observed (Fig. 7A). Because of 

this, the mutator yielded a broader spectrum of nucleotide changes across the entire genome. The 

mutator was also biased toward transversions in the non-synonymous substitutions (Fig. 7B). For 

EMS, the spectrum of mutation events observed is similar to what has been reported by others.12 

At the protein level, the amino acid substitution pattern differed between the mutator and 

EMS (Table 4). Mutations generated by the mutator resulted in amino acid substitutions more often 

than did mutations generated by EMS (85% versus 61%, respectively). Most of the substitutions 

made by the mutator were nonconservative, whereas only half of the substitutions made by EMS 

were nonconservative. In addition, the mutator generated more structure-disturbing amino acid 

changes (Gly/Pro). The transversion bias of non-synonymous substitutions by the mutator generates 

more diverse amino acid substitution patterns than does the transition bias of EMS. 

 

Gap between a higher apparent mutation frequency and fewer mutations 

Although the average base-substitution mutation rate of EMS was approximately 100 

times higher than that of the mutator, the mutation frequency of the mutator was approximately 7 

times higher than that of EMS. This gap between a higher apparent mutation frequency and fewer 

mutations may be explained by the higher proportion of amino acid changes and the diversity of 

amino acid substitutions by the mutator. This suggests one plausible explanation for the effectiveness 

of the disparity mutagenesis. 

The disparity mutagenesis technique has been successfully applied to not only eukaryotic 

microorganisms such as S. cerevisiae,5,7-9 S. pombe,9 and Ashbya gossypii,10 but also to prokaryotic 

microorganisms such as Escherichia coli,4 and Bradyrhizobium japonicum.6 I believe that this novel 
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mutagenesis technique has the potential to be applied to a wide variety of microorganisms. 

 

Conclusion 

In this study, I developed COVA and applied it to re-sequence yeast mutagenized by 

novel mutagenesis technique. COVA has successfully reduced the time for procedure of variant 

annotation, compared with manual annotation. This study also demonstrated that a 

proofreading-deficient and low-fidelity polδMKII mutator is a useful and efficient method for rapid 

strain improvement based on in vivo mutagenesis. It has been suggested that organisms may 

accelerate evolution by decreasing the fidelity of the proofreading activity of polδ in nature.29 

Therefore, this mutator may also be useful for studying the acceleration of evolution. 
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Figure 1. Scheme of DNA replication and the disparity mutagenesis. 

In eukaryote, leading strand of DNA is continuously replicated by DNA polymerase ε 

(epsilon). Whereas, lagging strand of DNA is discontinuously replicated by DNA polymerase 

δ (delta). Due to its complex manner, the disparity model assumes that mutations occur 

preferentially on the lagging strand. In the disparity mutagenesis, the proofreading-deficient 

DNA polymerase δ is overexpressed from the plasmid vector, therefore the mutation rate is 

transiently increased. 
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Figure 2. Workflow of annotation of variants using COVA. 

The COVA consists of seven major steps to annotate variants. 
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Figure 3. Example of the output table for comparison of variants among samples 

A comparison table of variants (SNP/InDel) among multiple samples helps to pinpoint causal 

variation(s) relating to phenotype. This file contains annotated variants from all samples, such as type 

and frequency of reads having variant and its effect on the gene. The variants observed in the 

parental strain are flagged, so one can subtract parental variations. This file is a comma-delimited file, 

so can be opened in Excel. In ‘SampleName_V’ field, annotated variant is reported as the following 

manner: for snp in CDS, the reference amino acid, the position of the corresponding codon, and the 

substituted amino acid, and in parentheses the position of the substituted base, the reference base, and 

the substituted base; * means a stop codon (not appeared in this example), # means a 

non-synonymous change, and % means a heterogeneous variant (also not shown in this example); 

for insertion/deletion in CDS (frame shift variant which did not appear in this example), the position 

of the corresponding codon and in parentheses the position of the corresponding base and the 

inserted (shown as +) or deleted (shown as -) base); for SNP in non-coding regions, the position of 

the substituted base, the reference base, and the substituted base; and for insertion/deletion in 

non-coding regions, the position of the corresponding base and the inserted (+) or deleted (-) base. 

‘SampleName_R’ fields show number of reads covering a given variant and fraction of reads having 

the variant in parentheses. 
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Figure 4. Workflow of this study. 

Two mutagenesis techniques were evaluated in this study. The parental haploid yeast strain 

was mutagenized by each method. In disparity mutagenesis, a yeast expression 

plasmidYCplac33/pol�MKII was transformed to the parental strain, and then five 

transformants were picked and independently cultivated in SC medium at 30ºC for 24 h 

(about 30 generations). In EMS mutagenesis, the parental strain was suspended in PBS 

containing EMS, and was incubated at 30ºC for 1 h. Aliquots were spread on plates 

containing canavanine, and mutation frequencies were calculated as the number of drug 

resistant colonies per the number of total colonies. Single colonies were isolated from each 

test tube and DNA was extracted from five colonies independently. DNA mutagenized by 

each method was sequenced with Illumina GA II. Sequenced reads were mapped to the 

reference genome, and detected mutations were compared. 
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Table 1. Relationship between mutation frequency and survival after EMS treatment 

 

EMS 

concentration 

(%) 

Mutation frequency 

of canavanine 

resistant (× 10-7) 

Fold elevation* Survival (%) 

0.0 2  1 100 

1.5 35  18 51 

2.0 36  19 30 

2.5 33  17 21 

3.0 37  19 12 

* Fold elevation is relative to untreated cells. 
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Table 2. Frequency of drug-resistant mutants in the mutator strains 

 

Plasmids 
Mutation frequency of 

canavanine resistant (× 10-7) 
Fold elevation* 

YCplac33 3.70 1 

YCplac33/polδMKII 486.7 ± 145.0# 132 

* Fold elevation is relative to the empty vector YCplac33. 

# Mean ± standard deviation of 3 SC plates. 
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Table 3. Sequencing and mapping statistics 

 

Sample 

name 

Number of 

mapped 

unique reads 

% mapped 

reads 

% genome covered 

by unique reads 

Average 

coverage* by 

unique reads 

BY2961 11,155,487 96.13 94.97 87.9 × 

EMS1 5,406,681 96.94 94.81 42.2 × 

EMS2 6,240,554 97.26 94.85 48.7 × 

EMS3 5,275,583 98.12 94.81 41.2 × 

EMS4 4,502,271 97.17 94.80 35.2 × 

EMS5 4,113,345 96.27 94.83 32.1 × 

Mutator1 9,612,541 93.93 94.90 75.8 × 

Mutator2 5,111,531 92.39 94.79 39.9 × 

Mutator3 5,649,822 96.11 94.95 44.1 × 

Mutator4 4,226,405 98.79 94.85 33.0 × 

Mutator5 9,855,938 97.36 95.10 77.6 × 

* Coverage is defined as the percentage of bases in the genome that have at least 1 uniquely 

mapped read at that position. 
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Figure 5. Average number of mutations introduced by mutagenesis. 

By subtracting parental mutations from each mutagenized strain, I determined the number of 

mutations that were introduced by each mutagen. Bars represent mean ± standard error for 5 

clones. *p < 0.05 versus mutator in a two-sample t-test. 
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Figure 6. Distribution of SNVs across various gene features. 

The mutator (A) and EMS (B) generated mutations that were distributed similarly across the 

various gene features. The data for individual strains were combined according to the 

mutagen used. Promoters indicate the region 1 kb upstream of each gene. Terminators 

indicate the region 200 bp downstream of each gene. 
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Figure 7. Proportion of transitions and transversions induced by polδ and EMS. 

The mutations spectra show the frequency of transitions and transversions generated by the 

mutator and EMS. The data for the individual strains were combined according to the 

mutagen used. The color key identifying the type of mutation is provided in the inset. 

Complementary mutations, such as A!C and T!G, are pooled. (A) Genome-wide profile; 

(B) Non-synonymous substitutions only. 
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Table 4. Mutations at protein level 

 

 

Mutator EMS 

 

n % n % 

Total mutations 28 100 201 100 

  Preserved amino acids 2 7.1 74 36.8 

  Amino acid changes 24 85.7 123 61.2 

  Stop 2 7.1 4 2.0 

 
    

Changes in codon letter 28 100 201 100 

 1st 11 39.3 64 31.8 

 2nd 13 46.4 65 32.3 

 3rd 4 14.3 72 35.8 

 
    

Impact of amino acid change 24 100 123 100 

  Conservativea 4 16.7 57 46.3 

  Nonconservative 20 83.3 66 53.7 

 
    

Stop and Gly/Pro codons 4 15.4 4 3.1 

  Stop 2 50.0 4 100.0 

  Gly/Pro 2 50.0 0 0.0 

a Conservative and nonconservative amino acid substitutions were defined according to the 

BLOSUM62 matrix.26 
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CHAPTER III 

 

Establishment of method for genome sequence determination using the 3rd generation sequencing 

and application to a novel lactic acid-producing bacterium 

 

Abstract 

Draft genome sequences of microorganisms can be obtained rapidly and cost-effectively 

by using second-generation sequencing technologies. The recent advent of third-generation 

sequencing promises to offer a complete genome sequence. Enterococcus mundtii QU 25, a 

non-dairy bacterial strain of ovine faecal origin, can ferment both cellobiose and xylose to produce 

L-lactic acid. The use of this strain is highly desirable for economical L-lactate production from 

renewable biomass substrates. Genome sequence determination is necessary for the genetic 

improvement of this strain. In this study, the complete genome sequence of strain QU 25 is 

determined, primarily using Pacific Biosciences sequencing technology. The E. mundtii QU 25 

genome comprises a 3,022,186-bp single circular chromosome (GC content, 38.6%) and five 

circular plasmids: pQY182, pQY082, pQY039, pQY024, and pQY003. In all, 2,900 protein-coding 

sequences, 63 tRNA genes, and 6 rRNA operons were predicted in QU 25 chromosome. Plasmid 

pQY024 harbours genes for mundticin production. It was found that strain QU 25 produces a 

bacteriocin, suggesting that mundticin-encoded genes on plasmid pQY024 were functional. For 

lactic acid fermentation, two gene clusters were identified—one involved in the initial metabolism of 

xylose and uptake of pentose and the second containing genes for the pentose phosphate pathway 

and uptake of related sugars. This is the first complete genome sequence of an E. mundtii strain. The 

data provide insights into lactate production in this bacterium and its evolution among enterococci. 
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Introduction 

Optically pure lactic acid is necessary for the production of the bioplastic polylactic acid. 

The use of cellulosic biomass instead of food crops should lower the cost for commercial production 

of this green plastic. Enterococcus mundtii QU 25 is a non-dairy bacterial strain that was originally 

isolated from ovine feces.1 Unlike most lactic acid bacteria (LAB), strain QU 25 can ferment both 

cellobiose and xylose to produce L-lactic acid.1,2 This strain metabolizes a mixture of glucose and 

cellobiose simultaneously without apparent carbon catabolite repression1, and it produces optically 

pure L-lactate (≥99.9%) with a yield of 1.41 mol/mol xylose consumed, without by-products such as 

acetic acid or ethanol.1,2 Moreover, high productivity of L-lactic acid in an open repeated batch 

fermentation system under non-sterile conditions was demonstrated.3 Therefore, the use of strain QU 

25 is highly desirable for the economical production of L-lactate from renewable biomass substrates. 

Furthermore, determination of the genome sequence of this bacterium is necessary to generate 

optimized, recombinant strains for commercial use. 

Draft genome sequences of microorganisms can be obtained rapidly and cost-effectively 

by using second-generation sequencing technologies. Owing to its relatively short read length of 

second-generation platforms (100–700 bp), obtaining a complete genome sequence requires 

additional costs and time-consuming finishing steps such as scaffolding and gap closing. A typical 

draft genome consists of dozens or hundreds of contigs/scaffolds (Fig. 1). However, repetitive DNA 

elements such as an rRNA operon, a phage region, and an insertion sequence, are usually determined 

as only partial sequences. This situation is not sufficient to examine the complete genome structure. 

The recent advent of third-generation sequencing promises to offer a complete genome 

sequence. Third-generation single molecule real time (SMRT) sequencing technology developed by 

Pacific Biosciences (PacBio) can produce considerably long sequences (~23 kb). This technology 
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generates two types of sequences: CLR (continuous long reads) and CCS  (circular consensus 

sequences) reads.4 The read length of CLR can reach up to 23 kb; however the average base accuracy 

is only 82.1–84.4%.5 On the other hand, CCS reads are consensus sequences obtained from multiple 

passes on a single sequence with relatively short lengths (~2 kb) and a low error rate.6 Using the 

PBcR algorithm, read accuracy of CLR can be improved from 80% to over 99.9% by an error 

correction using CCS (Fig. 2) 5. Complete genome sequencing using only PacBio sequence data was 

recently reported.7 However, sequence and assembly methods of PacBio have not been well 

established as yet. 

In this study, I aimed to establish methods for genome sequence determination using the 

3rd generation sequencer PacBio RS and applied it to genome sequencing of E. mundtii QU 25. To 

date, there have been only two draft genome sequences available for E. mundtii (strains CRL16568 

and ATCC 882). Here, the complete genome sequence of strain QU 25 was determined. Its 

chromosome sequence was sequenced using only PacBio sequence data. This is the first complete 

genome sequence of an E. mundtii strain. The data reveal useful insights on lactic acid fermentation 

in this bacterium, as well as phylogenetic relationships with other Enterococcus species. 

 

Materials and methods 

Media, growth conditions and extraction of genomic DNA for sequencing 

E. mundtii QU 25 cells were grown to mid-log phase in GM17.9 Cells from 100 

ml-culture were harvested, suspended in 25 mL of a solution containing 2 g of polyethylene glycol 

2000, 62.5 mg of egg-white lysozyme, and 5 mM Tris-hydrochloride (pH 8.0), and incubated for 60 

min at 37°C. After centrifugation, the cells were resuspended in 12.5 mL of TES� buffer (50 mM 

Tris-hydrochloride [pH 7.6], 20 mM sodium ethylenediaminetetraacetic acid, and 25% sucrose), 
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treated with 8 µg/mL of ribonuclease A for 60 min at 37°C, and then lysed with heat at 60°C for 2 h 

in the presence of 40 µg/mL of proteinase K and 1.7% sodium dodecyl sulphate. Total DNA was 

extracted gently from the lysate with PCI mixture (phenol, chloroform, and isoamyl alcohol in a ratio 

of 25:24:1, respectively) three times and precipitated with ethanol. 

 

Short-read sequencing with Illumina 

A 500-bp paired-end library was prepared following the manufactures’ protocols. An 8-kb 

mate-paired library was prepared according to ‘454!GS FLX Titanium 20 kb and 8 kb Span Paired 

End Library Preparation Method Manual’, with modification for an Illumina library preparation. The 

500-bp paired-end library was sequenced using the Illumina Genome Analyzer IIx, generating 76-bp 

paired-end reads (48,724,736 reads, ~1234× coverage). The 8-kb mate-paired library was sequenced 

using the Illumina Genome Analyzer IIx, generating 100-bp paired-end reads (21,716,672 reads, 

~723× coverage). The 500-bp and 8-kb reads were filtered and trimmed, then assembled using 

SOAPdenovo (http://soap.genomics.org.cn/). To evaluate accuracy of contig sequences determined 

by PacBio, the 500-bp paired-end reads were mapped to the contigs generated form PacBio RS, and 

detection of variants was carried out with threshold of frequency ≥90% using CLC Genomics 

workbench 6 (CLC bio, Aarhus, Denmark). The copy number of plasmid per chromosome was 

estimated based on the coverage ratio between the corresponding contig and the chromosome contig. 

 

Long-read sequencing with Roche/454 sequencing 

A 1.6-kb fragment library was sequenced using the GS-FLX+ system. A total of 302,056 

reads (mean length, 455 bp; ~34× coverage) was generated and assembled using Newbler (ver. 2.6). 
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Ultra long-read sequencing with PacBio RS 

Two types of SMRTbell DNA template libraries were created with 1-kb and 10-kb 

sheared genomic DNA, and prepared using the standard PacBio RS sample preparation methods 

with C2 chemistry specific to each insert size. The 10-kb library was sequenced on eight SMRT cells 

with a 1 × 120 min collection protocol, generating 189,953 post-filtered continuous long reads (CLR; 

mean length, 3,702 bp; maximum length 20,405 bp; ~234× coverage). The 1-kb library was 

sequenced on eight SMRT cells with a 2 × 55 min collection protocol, generating 258,068 

post-filtered circular consensus sequences (CCS; mean length, 660 bp; ~57× coverage). After error 

correction, the resulting 6,806 PBcR of at least 7-kb length (mean length, 8,517 bp; maximum length, 

16,733 bp; ~20× coverage) were assembled. 

 

Processing of PacBio RS data and validation of assembly with optical mapping 

The error correction of CLR reads was performed using the command pacBioToCA.5 

CCS (57× length coverage) reads were used for correction. After error correction, reads named 

PacBio-corrected Reads (PBcR) were selected for assembly. Assembly was performed using Celera 

Assembler (ver. 7.0).10 To confirm the correctness of the assembly, DNA from QU 25 cells was 

digested using NcoI and a whole-genome optical map (OpGen, Inc., Gaithersburg, MD) was 

generated.11 

 

Genome annotation and comparative genome 

At first, the genome sequence was automatically annotated using the MiGAP, Microbial 

Genome Annotation Pipeline (www.migap.org) with g-MiGAP level. In the pipeline, open reading 

frames (ORFs) were identified using MetaGeneAnnotator,12 and genes for tRNAs and rRNAs were 



 78 

identified by tRNAscan-SE and RNAmmer, respectively.13 Predicted ORFs were annotated using 

BLASTP searches against other Enterococcus genomes, and National Center of Biological 

Information (NCBI) nr14 with an E-value of 1 × 10-10. Additional annotation was performed using 

InterProScan15 and KEGG pathway analysis.16 Regions containing prophage were predicted by a 

phage search tool, PHAST (http://phast.wishartlab.com/)17 and further manual inspection. The 

insertion sequence (IS) was detected by ISsaga.18 CRISPR loci were detected by CRISPRfinder.19 

For comparative genomes of other Enterococcus spp., a draft genome sequence of E. mundtii ATCC 

882 was obtained from the Broad Institute website 

(https://olive.broadinstitute.org/genomes/ente_mund_atcc882.1). In addition, complete genome 

sequences of five Enterococcus spp. with (E. casseliflavus EC2020: NC_021023; E. faecalis V58321: 

NC_004668, NC_004669, NC_004670, and NC_004671; E. faecium Aus000422: NC_017022, 

NC_017023, NC_017024, and NC_017032; E. faecium DO23: NC_017960, NC_017961, 

NC_017962, and NC_017963; E. hirae ATCC 979024: NC_015845 and NC_018081) were obtained 

from the NCBI website for genome comparisons. GenomeMatcher25 and In Silico Molecular 

Cloning Genomics Edition (IMC-GE) software (In Silico Biology, Japan) were also used for intra- 

and inter-QU 25 genome comparisons. For genome analysis described above, I have developed 

several in-house scripts written in Ruby language. 

 

Assay of vancomycin resistance 

E. mundtii QU 25 was propagated in MRS medium (Oxoid, Basingstoke, UK) at 30°C for 

12 h as a pre-culture. One hundred microliters of pre-culture was inoculated in 10 mL of MRS 

medium containing various concentrations of vancomycin (2–100 µg/mL, Sigma, St. Louis, MO). 

After incubation at 30°C for 24 h, the minimum concentration of vancomycin that resulted in the 
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absence of growth was considered to be the minimum inhibitory concentration (MIC). 

 

Assay of bacteriocin activity 

Lactobacillus sakei JCM 1157T and E. faecalis JCM 5803T were employed as indicator 

strains for bacteriocin activity. Together with E. mundtii QU 25, E. mundtii QU 2 (mundticin 

producer)26 and JCM 8731T (non-bacteriocin producer) were tested as positive and negative controls, 

respectively. The three E. mundtii strains were also used as indicator strains for cross- and 

self-immunity. All strains were propagated in MRS medium at 30°C for 12–18 h before use. Strains 

QU 25, QU 2, and JCM 8731T were cultured in MRS medium at 30°C for 12 h for bacteriocin 

production. Bacteriocin activity assay was performed by the spot-on-lawn method, as described 

previously.27 Briefly, 10 µL of each cell-free culture supernatant was spotted onto a double-layered 

agar plate containing 5 mL of Lactobacilli Agar AOAC (BD, Sparks, MD, USA) inoculated with an 

overnight culture of an indicator strain as an upper layer, and 10 mL of MRS medium supplemented 

with 1.2% agar as a bottom layer. After overnight incubation at appropriate temperatures for 

indicator strains, bacterial lawns were checked for inhibition zones. 

 

Assay of catalase and hemolysin activity 

Strain QU 25 was tested for catalase activity by two methods. First, cells cultured in MRS 

liquid medium at 30°C for 12 h were collected by centrifugation and examined for catalase activity 

by the addition of 3% hydrogen peroxide solution. Second, colonies formed on the sheep 

blood-containing agar plates (Eiken Chemical, Tokyo, Japan) after incubation at 30°C for 24 h were 

examined by the addition of 3% hydrogen peroxide solution. Generation of oxygen bubbles was 

considered to be indicative of catalase activity. Colonies formed on blood agar plates were also 
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examined for hemolysin activity. Discoloration or clearing of blood agar in the vicinity of the 

colonies was regarded as hemolysis. 

 

Accession code 

The complete genome sequence for E. mundtii QU 25 was deposited in 

GenBank/DDBJ/EMBL under accession numbers AP013036 to AP013041. 

 

Results and Discussion 

Genome sequencing, assembly, and annotation 

To determine the full genome sequence of E. mundtii QU 25, three sequencing 

technologies (Illumina, Roche/454, and PacBio) were tried out for genome assembly. Workflow of 

assembly is illustrated in Fig. 3. Summary of assembly statistics is shown in Table 1. First, a genome 

assembly using Illumina was tried, generating 238 scaffolds. Second, Roche/454 GS-FLX+ 

sequencing generated 60 contigs. However it seemed that it takes a lot of time and effort to finish 

genome. Then an assemble using PacBio RS was tried, generating five contigs. The length of the 

largest contigs was 3.02 Mb, the other contigs seemed to be plasmid due to its length. 

To evaluate accuracy of these contig sequences from PacBio RS, the 500-bp paired-end 

reads of Illumina were mapped to them. Only 113 base-pair differences and 17 insertions were 

detected, confirming highly accuracy of contig sequences generated from PacBio RS. Comparison of 

the NcoI-digest of the whole-genome optical map and in silico-generated physical maps of contigs 

showed that the largest contig (3 Mb) was mapped to the chromosome, confirming the correctness of 

the assembly (Fig. 4). Thus, it was concluded that the remaining four contigs were plasmids. The 

presence of the 2.5-kb plasmid, which had been detected as an extrachromosomal element by 
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agarose gel electrophoresis (data not shown), was not included in the five contigs generated by 

PacBio, due to its assembly threshold of 7-kb read length. Therefore, one contig produced using 

Roche/454 was adapted. As a result, the complete chromosome sequence of E. mundtii QU 25 was 

determined using only PacBio RS sequencing. After determination of genome sequence, I performed 

genome annotation using various software and databases as illustrated in Fig. 5. 

 

Summary of genomic features 

The genome of QU 25 comprises a single circular chromosome of 3,022,186 bp (GC 

content, 38.6%) and five circular plasmids: pQY182, pQY082, pQY039, pQY024, and pQY003, 

with lengths of 181,920 bp, 82,213 bp, 38,528 bp, 23,629 bp, and 2,584 bp, and GC contents of 

36.2%, 35.8%, 33.8%, 35.3%, and 38.9%, respectively (Table 2, Fig. 6). Coordinates on the genome 

were designated as bp starting from the first nucleotide of the start codon of dnaA. It was confirmed 

that the likely location of the replication terminus by identifying a single dif sequence 

(ACTTTGTATAATATATATTATGTAAACT, position 1,449,088 to 1,449,115) that aligns with 

the shift in GC skew (Fig. 6). A total of 2,900 protein-coding sequences (CDS), 63 tRNA genes, and 

6 rRNA operons were predicted in the QU 25 chromosome. 

 

Comparative genomic with other Enterococcus species 

From the phylogeny based on 16S rRNA sequences, E. mundtii was closely related to E. 

hirae and E. faecium, while E. casseliflavus and E. faecalis were more distantly related to E. 

mundtii.28 To investigate the taxonomic position of E. mundtii QU 25 based on genome-wide 

comparisons, I first carried out ortholog analysis with the draft genome of E. mundtii ATCC 882 and 

five complete genomes of other Enterococcus spp., including two E. faecium strains (DO and 
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Aus0004), E. hirae ATCC 9790, E. casseliflavus EC20, and E. faecalis V583 (Table 3, Fig. 6). The 

results were consistent with the phylogeny based on 16S rRNA. While E. mundtii ATCC 882 

showed the highest similarity to QU 25 as anticipated, two other species (E. faecium DO and 

Aus0004, and E. hirae ATCC 9790) showed moderate degrees of similarity, while E. casseliflavus 

EC20 and E. faecalis V583 were the least similar. DNA dot plot analysis showed the centre diagonal 

line between QU 25, the two E. faecium strains, and E. hirae (Fig. 7), indicating that not only each of 

the genes but also their genome structures (or gene orders) were related. There were gene regions 

unique to the QU 25 strain (Fig. 6). Except for prophages, the 9-kb region (positions 1,359,588–

1,368,963) includes five hypothetical proteins and a cell-wall-anchored protein with a LPXTG motif. 

 

Prophages and insertion sequence elements (ISEs) 

Three chromosomal regions were identified as prophage loci. Their positions are indicated 

in Fig. 6, and are named phiEmqu1 (38.7 kb; positions 806,547–845,215), phiEmqu2 (47.9 kb; 

positions 2,327,297–2,375,151), and phiEmqu3 (40.8 kb; positions 2,556,843–2,597,594). Sixty, 70, 

and 54 phage-related genes were identified in these regions, respectively (Table 4). Prophages 

phiEmqu1 and phiEmqu3 contained several putative genes involved in DNA replication. However, 

no genes for DNA synthesis were found in the largest prophage phiEmqu2, suggesting that it is 

replication-defective. As shown in Fig. 6, the locations of ori (dnaA) and ter (dif) were not exactly 

opposite each other. The dif motif, which is strongly associated with replication termini,29 was about 

60 kb off the exact opposite position of ori (dnaA). Phage-mediated replicore imbalance has been 

observed in E. faecium Aus0004.22 Thus, the replicore balance of QU 25 could be disrupted by the 

insertion of phiEmqu2 and/or phiEmqu3. 

Clustered regularly interspaced short palindromic repeats (CRISPRs) are involved in a 
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recently discovered interference pathway that protects cells from bacteriophages and conjugative 

plasmids. Approximately 40% of sequenced bacterial genomes and ~90% of genomes from archaea 

contain at least one CRISPR locus.30 No CRISPR loci were detected in the QU 25 genome. Many 

insertion sequence elements (ISEs) have been found in enterococci. The relatively closed species E. 

mundtii ATCC 882, E. faecium DO and Aus0004 strains, and E. hirae ATCC 9790, have 21, 180, 76, 

and 14 ISEs and transposase-related genes, respectively. At least 13 different ISEs were detected in 

the QU 25 genome, ranging in copy number from 1 to 5, representing 33 distinct copies and 

distributed around the chromosome and plasmids (Table 5). The most frequently observed ISE type 

was the ISL3 family. 

 

Plasmids 

Enterococcus spp. have been reported to possess a number of plasmids that often confer 

resistance to antimicrobials and particular heavy metals, and serve to enhance virulence and/or DNA 

repair mechanisms.31–34 In strain QU 25, the plasmid copy number per chromosome was estimated 

by observing the distribution of read coverage of the Illumina sequence read, which indicated one 

copy of pQY182, pQY082, pQY039, and pQY024, and five copies of pQY003 (Table 2). BLASTN 

analyses showed that these five plasmids were similar to those of E. mundtii, E. faecium, E. hirae, or 

E. faecalis (Table 6). 

Plasmid pQY182 harbours genes that encode a two-component regulatory system, a 

cellulose 1,4-beta-cellobiosidase, a toxin-antitoxin system, and several proteins with DNA repair 

functions. Plasmid pQY082 harbours duplicated regions of 8.3 kb, which include the IS1675 

transposase, ubiD family decarboxylase, two cell surface proteins, and two proteins with unknown 

functions (EMQU_3088-3094 and EMQU_3155-3160 with 99% similarity). pQY082 also harbours 
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genes that encode several proteins with DNA repair functions and a toxin-antitoxin system. 

Toxin-antitoxin systems have been frequently reported in E. faecium strains,35 and the QU 25 

chromosome additionally has at least four such systems. Plasmid pQY039 contains several genes for 

a DNA damage-inducible protein and a gene encoding a toxin-antitoxin system. Plasmid pQY024 

also harbours genes for a DNA damage-inducible protein, a toxin-antitoxin system, and mundticin 

KS genes (see discussion later). Plasmid pQY003 only harbours genes with unknown function, 

except for the replication initiation protein. 

 

Vancomycin resistance 

Because many Enterococcus isolates show vancomycin resistance which has been 

associated with hospital-acquired infections, the sensitivity of QU 25 to this antibiotic was tested for 

the safety of industrial use. The results showed that the vancomycin MIC for QU 25 was >2 µg/mL, 

indicating that this strain is vancomycin-sensitive. Several known genes involved in vancomycin 

resistance (vanA, vanB, vanX, vanH, vanR, and vanS) 36 were not detected in the QU 25 genome and 

also in plasmids. 

 

Bacteriocin activity and self- and cross-immunity 

Bacteriocins are ribosomally synthesized bacterial peptides or proteins that show 

antimicrobial activity, generally against species that are closely related to bacteriocin producers.26 

Mundticin is one of the bacteriocins produced by some E. mundtii strains. It is significant to clarify 

whether QU 25 produces mundticin or not for the resistivity to contamination in a large-scale culture. 

Three genes, munA (mundticin precursor), munB (ATP-binding cassette (ABC) transporter), and 

munC (mundticin KS immunity protein), are responsible for mundticin production in E. mundtii 
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NERI 7393.37 The gene cluster containing these three genes was identified on plasmid pQY024, and 

munA (EMQU_3203; 100% nucleotide sequence identity), munB (EMQU_3204; 99.56% nucleotide 

sequence identity), and munC (EMQU_3205; 98.99% nucleotide sequence identity) showed high 

homology with corresponding genes in strain NERI 7393. 

To examine whether the gene cluster for mundticin synthesis was functional, QU 25 was 

tested for bacteriocin production. QU 25 and E. mundtii QU 2 showed bacteriocin activity against 

three indicator strains (Lactobacillus sakei JCM 1157T, E. faecalis JCM 5803T, and E. mundtii JCM 

8731T), none of which showed inhibitory activity (Table 7). QU 25 and QU 2 showed no activity 

against each other (Table 7), which indicated that these strains have self- and cross-immunity against 

their bacteriocins. Bacteriocin-producing strains are known to have immunity (tolerance) to their 

own bacteriocins and to bacteriocins with similar structures. Collectively, these results strongly 

suggest that QU 25 produces a bacteriocin with similar characteristics to mundticin produced by QU 

2. 

 

Hemolysin activity 

Hemolysin is one of the putative enterococcal virulence factors,22 so it is important to test 

the hemolysin activity for the safety of industrial use in a large-scale culture. Four putative hemolysin 

genes (hemolysin, hemolysin III, hemolysin A, and α-hemolysin) were identified (EMQU_0190 and 

EMQU_0948, EMQU_0449, EMQU_0841, and EMQU_1982, respectively). Hemolysin activity 

was tested and no changes to the blood agar in the vicinity of the colonies were observed (data not 

shown), suggesting that these putative hemolysin genes in QU 25 might be inactive or silent under 

the tested culture conditions. 
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Genes involved in lactic acid fermentation 

QU 25 was previously reported to have two different pathways for xylose metabolism: the 

phosphoketolase (PK) pathway and the pentose phosphate (PP)/glycolytic pathway 

in low xylose concentrations.2,38 When QU 25 was grown in high xylose concentrations, PK activity 

was not detected. However, higher transaldolase and transketolase activities were detected2, 

indicating that strain QU 25 would utilize the PP/glycolytic pathway, not the PK pathway, as the 

main pathway for lactic acid fermentation. 

Genes for xylose metabolism in the QU 25 chromosome were located in a 22-kb region 

(positions 2,904,895–2,926,710 bp) in two gene clusters: one involved in the initial metabolism of 

xylose and uptake of pentose, and the other involved in the PP pathway and uptake of related sugars 

(Fig. 8). The first gene cluster contained xylR (EMQU_2811; xylose repressor), xylA (EMQU_2810; 

xylose isomerase), xynB (EMQU_2809; xylan beta-1,4-xylosidase; additionally, there is another 

xynB gene (EMQU_2642) outside of this cluster), xylB (EMQU_2805; D-xylulose kinase), putative 

xylose transporter genes annotated as L-arabinose and D-Ribose ABC transporter 

(EMQU_2806-2808), and a hypothetical protein (EMQU_2804), the N-terminal and C-terminal 

regions of DNA mismatch repair protein (EMQU_2803 and EMQU_2802 respectively, which were 

thought as pseudogenes), ABC transporter ATP-binding protein (EMQU_2801), and its permease 

(EMQU_2800). Since pentose transporters have been shown to be promiscuous,39 D-xylose would 

likely be transported by these gene products in QU 25. 

The second gene cluster contains genes for the PP/glycolytic pathway, including a 

transketolase (EMQU_2812) and a transaldolase (EMQU_2814). Furthermore, this cluster contains 

an allulose-6-phosphate 3-epimerase gene (EMQU_2813), genes for a fructose-like 

phosphotransferase system (EMQU_2815-2819), and a putative transcriptional regulator 
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(EMQU_2820). Transketolase is a key enzyme in the PP/glycolytic pathway, and the QU 25 

chromosome additionally harbours one transketolase gene (EMQU_1275). Since 

allulose-6-phosphate 3-epimerase catalyzes the conversion of D-allulose-6-phosphate to 

D-fructose-6-phosphate, this enzyme and the fructose transporters may supply various ketoses to the 

PP/glycolytic pathway. For genes involved in the PK pathway, phosphoketolase (EMQU_1837), 

acetate kinase (EMQU_2620), phosphotransacetylase (EMQU_2119), acetaldehyde dehydrogenase 

(EMQU_2205), and alcohol dehydrogenase (EMQU_1129, EMQU_1829, and EMQU_2109) were 

dispersed throughout the chromosome. Metabolic pathway and genes involved in lactic acid 

fermentation of strain QU 25 are illustrated in Fig. 9. 

In order to get insights into the characteristics of strain QU 25 on lactic acid fermentation, 

the analysis of KEGG pathway was performed. The overview of KEGG pathway map of QU 25 is 

illustrated in Fig. 10. Then the comparison of gene number among related species using KO (KEGG 

Orthology) gene assignment was performed (Fig. 11). QU 25 genome possesses more genes than 

related species in categories of ABC transporters and phosphotransferase system (PTS), indicating 

that it might have high ability in sugar transport. Further closely examination of key enzymes related 

to lactic acid fermentation from xylose was performed (Table 8). Two clinical isolates of E. faecium 

(DO and Aus0004) and E. hirae ATCC 9790 lack genes necessary for the metabolism of xylose 

(transaldolase, phosphoketolase, xylulokinase, and xylose isomerase). Another clinical isolate, E. 

faecalis V583 lacks genes for transketolase, transaldolase, and phosphoketolase. Thus, it is most 

unlikely that these strains metabolize xylose. E. casseliflavus EC20 has genes for phosphoketolase, 

xylulokinase, and xylose isomerase, so that this strain can metabolize xylose by the PK pathway. It 

also has two complete genes for transketolase, but lacks transaldolase for the PP/glycolytic pathway. 

However, Kato et al. reported that Lactococcus lactis IO-1, which can utilize xylose, also lacks the 
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gene for transaldolase and is presumed to have an alternative PP/glycolytic pathway.40 Therefore, 

EC20 might metabolize xylose also by the PP/glycolytic pathway. Two E. mundtii strains (QU 25 

and ATCC 882) have two genes of full-length transketolase and all other genes necessary for the 

xylose metabolism by the two pathways. The results of our genomic analysis coincide with the 

description on their phenotype about xylose metabolism in Bergey’s Manual (p. 599, Table 116).28 

From these results, remarkable genomic features related to lactic acid fermentation in QU 25 still 

remain unclear, and the analysis of transcriptional regulation of these genes could help its 

clarification. 

QU 25 was able to metabolize a mixture of glucose and cellobiose simultaneously without 

apparent carbon catabolite repression (CCR).1 In Gram-positive bacteria, the roles of catabolite 

control protein A (CcpA) and seryl-phosphorylated form of histidine-containing protein (P-Ser-HPr) 

in CCR have been well studied.41 Genes encoding CcpA (EMQU_1943), HPr (EMQU_0954), and 

HPr kinase/phosphorylase (EMQU_1951) were also found in the QU 25 genome. The mechanism 

by which CCR is prevented in the presence of glucose is still unknown. 

Strain QU 25 shows a predominant production of L-(+)-lactate when grown at high 

concentrations of cellobiose and xylose, whereas D-lactic acid was not detected in the culture broth.1,2 

However, two L-lactate dehydrogenase genes (L-LDH; EMQU_1380 and EMQU_2714) and one 

D-lactate dehydrogenase gene (D-LDH; EMQU_2453) were identified. Potentially, little or no 

D-LDH was expressed under these culture conditions. Lactate racemase, another gene involved in 

D-lactic acid formation,42 was not found in the QU 25 genome. 

 
Conclusions 

This study successfully demonstrated that the determination of a complete genome 

sequence was achievable using only 3rd generation sequencing. Through this study, I established the 
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methods of assembly, annotation, and genome comparison of a novel bacterial genome. This study 

also has highlighted the phylogenetic relationship of E. mundtii QU 25 with related enterococcal 

species and characterized mobile genetic elements, including multiple prophages and ISEs, plasmids, 

and genes for metabolic pathways for lactic acid fermentation in this strain. In addition, the 

bacteriocin activity of QU 25 was demonstrated. The complete E. mundtii QU 25 genome sequence 

described here may be an important resource in the genetic engineering of recombinant strains for 

optimized production of lactic acid. 
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Figure 1. Scheme of determination of draft sequence using 2nd generation sequencing 

Genomic DNA was fragmented, generating random and overlapping DNA fragments. These 

fragments can range from 300bp to 800bp in length. Next, whole genome shotgun sequence 

is performed. Illumina platform generates short reads with 100 bp lengths. 454 platform 

generates short reads with 700-800 bp length. In assembly step, short read sequences are 

assembled, generating dozens to hundreds of contigs. Paired-end/mate-pair reads contain 

sequences of both ends of fragments. They are useful for joining contigs. Joining contigs 

using paried/mate end reads are called as scaffolding. Scaffolds usually contain gap 

sequences representing as ‘N’. 
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Figure 2. Scheme of determination of a genome sequence using the 3rd generation sequencer 

PacBio RS 

Genomic DNA was fragmented, generating random and overlapping DNA fragments. For 

circular consensus sequences (CCS), DNA is fragmented to less than 1kb. Mean length of 

CCS is 500 bp with a low error rate. For continuous long reads (CLR), DNA is fragmented to 

approximately 10kb. The length of CLR ranges from 3-20kb, however CLR contain many 

sequencing errors (represented as red circles). Error correction with mapping CCS to CLR 

can generate long reads with high read accuracy. These long reads are assembled by 

consensus overlap assembly, generating long contigs without gap. 
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Figure 3. Workflow of genome assembly of E. mundtii QU 25 using three sequencing technologies 

For Illumina sequencing, two types of library were prepared, a 500-bp insert size paired-end library and an 8-kb insert size mate-paired library. 

After sequencing, filtered reads were assembled using SOAPdenovo. For 454 FLX+ sequencing, a 1.6-kb size fragment library was prepared, 

and assembled using Newbler. For PacBio RS sequencing, two type of library were prepared, a 1-kb library and a 10-kb library. After 

sequencing using two methods (CCS and CLR), filtering reads were used for error correction of CLR, generating corrected long reads. Long 

reads with over 7 kb were assembled using Celera Assembler. 
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Table 1. Assembly statistics summary for the three different sequencing technologies 

 

Technology 

Illumina 

Genome 

Analyzer II 

Roche/454 

GS-FLX+ 
PacBio RS 

Sequenced library 400X PE 500bp + 

30X Mate 8kb 

40x Fragment 234x CLR 10kb 

57x CCS 1kb 

Assembler SOAPdenovo Newbler SMRT Pipe(AHA) 

Read Length 100 bp Avg 455bp Avg 3.7kb 

Max 20 kb 

Total Scaffolds 238 60 5 

Total Contigs 310 60 5 

N50 Contigs (bp) 81,003 133,269 3,022,186 

Max Contig (bp) 172,673 133,269 3,022,186 

Total num of N’s in scaffolds 85,141 0 0 

Total bp 3,274,156 3,262,871 3,348,476 
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Figure 4. Comparison of the NcoI-digest of the whole-genome optical map and in silico-generated physical maps of contigs 

Upper rectangle represents NcoI-digest of the whole-genome (chromosome) optical map. Vertical black line indicates NcoI-digested position. 

Middle rectangle represents in silico-generated physical maps of the largest contig (3Mb). Lines between maps indicate the position of identical 

sequences on the two maps, and can be used to visually identify misassembles and inversions. The whole-genome optical map also confirms 

circular configuration of the chromosome. Bottom small rectangles are non-aligned contigs to the chromosome, indicating they are plasmids. 

�	��

�� ����

�		�

��������

�
������������Whole&genome*op,cal*map�NcoI��

in&silico&generated*physical*maps*of*the*largest*con,g*(3Mb)�

Four*unmapped*con,gs*(Plasmids)�



 99 

 

 
 

Figure 5. Workflow of genome annotation 

Prediction of ORF and RNA from assembled contig sequences was performed using MiGAP 

(Microbial Genome Annotation Pipeline). After prediction of ORF, they were further 

analyzed using homology search, domain analysis, and KEGG pathway. For analysis of 

mobile genetic elements, phage, insertion sequence (IS), and CRISPR were predicted using 

third-party web services. Programs or web services used for each analysis are noted in 

brackets. After each analysis, annotations were integrated as Genbank format, and they were 

deposited to DDBJ (DNA Data Bank of Japan). 
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Table 2. General features of the Enterococcus mundtii QU 25 genome 

 

Features Chromosome pQY182 pQY082 pQY039 pQY024 pQY003 

Size (bp) 3,022,186 181,920 82,213 38,528 23,629 2,584 

G+C content (%) 38.6 36.2 35.8 33.8 35.3 38.9 

No. of rRNA operons 6 0 0 0 0 0 

No. of tRNA genes 63 0 0 0 0 0 

CDS (protein coding) 2,900 178 82 36 21 4 

Avg. of CDS length (bp) 884 813 818 850 903 436 

Estimated copy number 

of replicon 1 1 1 1 1 5 
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Figure 6. Circular map of Enterococcus mundtii QU 25 complete genome 

Genome map of the QU 25 strain. In the outermost circle, three prophages of 

phiEmqu1, phiEmqu2 and phiEmqu3, replication origin (dnaA), and terminus (dif) are shown. 

In the second circle, the ORFs transcribed in a clockwise manner are shown as bars. The third 

circle shows ORFS transcribed in a counter-clockwise manner. The fourth to ninth circles 

depict the results of ortholog analyses (BLASTP E-value ≤ 1 × 10-10) with E. mundtii ATCC 

882, E. faecium DO, E. faecium Aus0004, E. hirae ATCC 9790, E. casseliflavus EC20, and E. 

faecalis V583, respectively. The extent of homology relative to QU 25 is depicted using a 
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heat map of arbitrarily chosen bins. The colour scheme and percentage identity for orthologs 

are as follows: red, orthologs with >90% identity; green, 70–90% identity; blue, 50–70% 

identity; black, <50% identity. The tenth circle shows the positions of rRNA operons. The 

last two (innermost) circles represent G+C content (purple > 39.5% average; green < 39.5% 

average; range from 32 to 47%) and G+C skew, both calculated for a 10-kb window with 

1-kb stepping. 
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Table 3. The number of orthologous genes between E. mundtii QU 25 and each Enterococci species 

 

 E. casseliflavus 

EC20 

E. faecalis 

V583 

E. faecium 

Aus0004 

E. faecium 

DO 

E. hirae 

ATCC 9790 

E. mundtii 

ATCC 882 

No. of 

orthologous genes* 

1,815 1,714 1,918 1,927 1,892 2,595 

Average 

identity (%) 

66.7 66.2 78.8 78.8 78.0 98.3 

*Numbers of orthologous genes between E. mundtii QU 25 and each Enterococci species were calculated by the best-hit analysis using BLASTP 

program with a threshold E-value of 1 × 10-10. 
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Figure 7. Dot plots comparison of the six Enterococcus species 

Dot plots were generated using BLASTN and GenomeMatcher software. Color 

scale indicates the percentage of sequence homology. 
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Table 4. Prophage loci and genes on E. mundtii QU 25 genome 

 

Locus Tag Start End Strand Predicted Gene Product Note 

phiEmqu1 806547 845215    

 806547 806564 + terminal direct repeat: CTCCTGTGACGTAAAAAA 

EMQU_0754 806636 807763 - integrase InterPro: IPR002104: Integrase, catalytic; IPR011010: DNA 

breaking-rejoining enzyme, catalytic core; IPR013762: 

Integrase-like, catalytic core; IPR023109: Integrase/recombinase, 

N-terminal; PHAST: PHAGE_Lactoc_bIL309 

EMQU_0755 807878 808522 - hypothetical protein  

EMQU_0756 808613 809452 - putative S24-like peptidase InterPro: IPR001387: Helix-turn-helix type 3; IPR010982: Lambda 

repressor-like, DNA-binding; IPR011056: Peptidase 

S24/S26A/S26B/S26C, beta-ribbon domain; IPR015927: Peptidase 

S24/S26A/S26B/S26C; IPR019759: Peptidase S24/S26A/S26B; 

PHAST: PHAGE_Geobac_E2 

EMQU_0757 809625 809858 + Cro-like protein phage 

associated 

InterPro: IPR001387: Helix-turn-helix type 3; IPR010982: Lambda 

repressor-like, DNA-binding; PHAST: PHAGE_Lactob_AQ113 

EMQU_0758 809919 810668 + gp34 KO: K07741; InterPro: IPR013557: AntA/AntB antirepressor; 

PHAST: PHAGE_Brocho_BL3 

EMQU_0759 810682 810996 + hypothetical protein 

SPTP3101_gp10 

InterPro: IPR008489: Bacteriophage bIL285, Orf7; PHAST: 

PHAGE_Staphy_1 
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Locus Tag Start End Strand Predicted Gene Product Note 

EMQU_0760 811009 811176 + hypothetical protein  

EMQU_0761 811274 811609 + hypothetical protein  

EMQU_0762 811606 811830 + hypothetical protein  

EMQU_0763 811842 812195 + hypothetical protein EFJG_00046  

EMQU_0764 812188 812379 + hypothetical protein  

EMQU_0765 812382 813404 + RecT protein KO: K07455; InterPro: IPR018330: DNA single-strand annealing 

protein RecT-like; PHAST: PHAGE_Lactob_LF1 

EMQU_0766 813367 814182 + hypothetical protein InterPro: IPR016974: Uncharacterised phage-associated protein; 

IPR024432: Putative exodeoxyribonuclease 8, PDDEXK-like 

domain 

EMQU_0767 814200 814991 + DNA replication protein PHAST: PHAGE_Lactob_Lrm1 

EMQU_0768 814991 815839 + putative DnaC protein KO: K02315; InterPro: IPR002611: IstB-like ATP-binding protein; 

IPR003593: ATPase, AAA+ type, core; PHAST: 

PHAGE_Bacill_WBeta 

EMQU_0769 815836 816078 + hypothetical protein  

EMQU_0770 816075 816263 + hypothetical protein  

EMQU_0771 816221 816667 + Orf19 InterPro: IPR009414: Bacteriophage 92, Orf34; PHAST: 

PHAGE_Lactoc_bIL286 

EMQU_0772 816688 817122 - hypothetical protein  

EMQU_0773 817174 817746 + gp58 PHAST: PHAGE_Lister_B054 

EMQU_0774 817746 817934 + hypothetical protein  
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Locus Tag Start End Strand Predicted Gene Product Note 

EMQU_0775 817945 818139 + hypothetical protein  

EMQU_0776 818136 818267 + hypothetical protein  

EMQU_0777 818264 818659 + YopX superfamily protein InterPro: IPR010024: Conserved hypothetical protein CHP1671; 

IPR019096: YopX protein; IPR023385: YopX-like domain, beta 

barrel type; PHAST: PHAGE_Entero_phiFL2A 

EMQU_0778 818656 819714 + putative DNA methylase KO: K00558: DNA (cytosine-5-)-methyltransferase [EC:2.1.1.37]; 

InterPro: IPR001525: C-5 cytosine methyltransferase; IPR018117: 

DNA methylase, C-5 cytosine-specific, active site; PHAST: 

PHAGE_Strept_5093 

EMQU_0779 819728 819943 + hypothetical protein  

EMQU_0780 819936 820511 + phage protein, putative InterPro: IPR012865: Protein of unknown function DUF1642 

EMQU_0781 820508 820729 + hypothetical protein  

EMQU_0782 820726 821082 + hypothetical protein  

EMQU_0783 821072 821269 + hypothetical protein  

EMQU_0784 821269 821463 + hypothetical protein  

EMQU_0785 821814 822290 + conserved phage protein InterPro: IPR013249: RNA polymerase sigma factor 70, region 4 

type 2; IPR013324: RNA polymerase sigma factor, region 3/4; 

PHAST: PHAGE_Bacill_WBeta 

EMQU_0786 822498 823568 + hypothetical protein SGHV062 PHAST: PHAGE_Glossi_virus 

EMQU_0787 823671 823898 + hypothetical protein  

EMQU_0788 823895 824194 + hypothetical protein  
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Locus Tag Start End Strand Predicted Gene Product Note 

EMQU_0789 824181 824522 + HNH endonuclease domain 

protein 

InterPro: IPR002711: HNH endonuclease; IPR003615: HNH 

nuclease; PHAST: PHAGE_Lactob_LF1 

EMQU_0790 824680 825144 + phage terminase small subunit InterPro: IPR006448: Streptococcus phage 7201, Orf21; PHAST: 

PHAGE_Lactob_LF1 

EMQU_0791 825183 826925 + bacteriophage terminase large 

subunit 

InterPro: IPR005021: Bacteriophage bIL285, Orf41, terminase; 

PHAST: PHAGE_Lactob_LF1 

EMQU_0792 826940 827110 + hypothetical protein  

EMQU_0793 827137 828399 + bacteriophage portal protein InterPro: IPR006427: Bacteriophage 16-3, portal protein; 

IPR006944: Bacteriophage/Gene transfer agent portal protein; 

PHAST: PHAGE_Lactob_LF1 

EMQU_0794 828335 828955 + phage head maturation protease KO: K06904; InterPro: IPR006433: Prohead protease, HK97 family; 

PHAST: PHAGE_Lactob_LF1 

EMQU_0795 829013 830227 + phage capsid protein InterPro: IPR006444: Bacteriophage 16-3, major capsid protein; 

IPR024455: Caudovirus, capsid; PHAST: PHAGE_Lactob_LF1 

EMQU_0796 830245 830538 + hypothetical protein  

EMQU_0797 830525 830878 + DNA packaging protein InterPro: IPR006450: Bacteriophage HK022, Gp6; IPR021146: 

Bacteriophage QLRG family, putative DNA packaging; PHAST: 

PHAGE_Lactob_LF1 

EMQU_0798 830865 831200 + head-tail joining protein InterPro: IPR008767: Bacteriophage SPP1, head-tail adaptor; 

PHAST: PHAGE_Lactob_LF1 

EMQU_0799 831197 831562 + head-tail joining protein InterPro: IPR010064: Bacteriophage HK97, Gp10; PHAST: 
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Locus Tag Start End Strand Predicted Gene Product Note 

PHAGE_Lactob_LF1 

EMQU_0800 831559 831975 + head-tail joining protein PHAST: PHAGE_Lactob_LF1 

EMQU_0801 832016 832594 + major tail protein InterPro: IPR006490: Bacteriophage bIL285, Orf50, major tail 

protein; IPR006724: Bacteriophage bIL286, Orf50, major tail; 

PHAST: PHAGE_Lactob_LF1 

EMQU_0802 832665 832991 + hypothetical protein 

SpyM3_0934 

PHAST: PHAGE_Strept_2 

EMQU_0803 833009 833173 + hypothetical protein  

EMQU_0804 833185 837780 + phage tail tape measure protein InterPro: IPR010090: Bacteriophage bIL285, Orf52, tail tape 

measure protein; PHAST: PHAGE_Lactob_LF1 

EMQU_0805 837777 838598 + phage tail family protein InterPro: IPR008841: Siphovirus tail component; PHAST: 

PHAGE_Staphy_SMSAP5 

EMQU_0806 838607 839635 + phage-associated 

protein/endopeptidase 

InterPro: IPR010572: Bacteriophage 53, Orf003; PHAST: 

PHAGE_Lactob_LF1 

EMQU_0807 839635 840681 + gp19 InterPro: IPR011050: Pectin lyase fold/virulence factor; IPR012334: 

Pectin lyase fold; PHAST: PHAGE_Lister_A500 

EMQU_0808 840682 842868 + hypothetical protein InterPro: IPR018913: Domain of unknown function DUF2479 

EMQU_0809 842881 843228 + hypothetical protein  

EMQU_0810 843221 843349 + hypothetical protein InterPro: IPR010022: Protein of unknown function XkdX 

EMQU_0811 843360 843593 + hypothetical protein 

EfmU0317_0103 
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Locus Tag Start End Strand Predicted Gene Product Note 

EMQU_0812 843595 843852 + holin InterPro: IPR009708: Bacteriophage A118, holin; PHAST: 

PHAGE_Lister_A118 

EMQU_0813 843921 844814 + putative 

N-acetylmuramoyl-L-alanine 

amidase 

InterPro: IPR002502: N-acetylmuramoyl-L-alanine amidase domain; 

PHAST: PHAGE_Pseudo_phi15 

 845198 845215 + terminal direct repeat: CTCCTGTGACGTAAAAAA 

phiEmqu2 2327297 2375151    

 2327297 2327315 + terminal direct repeat: GTGGCAAATTTGTGGCAAA 

EMQU_2239 2328181 2329473 + D-serine dehydratase KO: K01753: D-serine dehydratase [EC:4.3.1.18]; InterPro: 

IPR000634: Serine/threonine dehydratase, 

pyridoxal-phosphate-binding site; IPR001926: Pyridoxal 

phosphate-dependent enzyme, beta subunit; IPR011780: D-serine 

ammonia-lyase 

EMQU_2240 2329599 2329931 - hypothetical protein  

EMQU_2241 2331190 2331336 - hypothetical protein  

EMQU_2242 2333101 2333745 + chitin binding protein KO: K03933; InterPro: IPR004302: Chitin-binding, domain 3; 

IPR014756: Immunoglobulin E-set 

EMQU_2243 2333945 2334787 + TIR protein InterPro: IPR000157: Toll/interleukin-1 receptor homology (TIR) 

domain 

EMQU_2244 2334776 2335012 - hypothetical protein 

EFJG_02379 

 



 111 

Locus Tag Start End Strand Predicted Gene Product Note 

EMQU_2245 2335068 2335961 - putative 

N-acetylmuramoyl-L-alanine 

amidase 

InterPro: IPR002502: N-acetylmuramoyl-L-alanine amidase domain; 

PHAST: PHAGE_Pseudo_phi15 

EMQU_2246 2336030 2336287 - holin InterPro: IPR009708: Bacteriophage A118, holin; PHAST: 

PHAGE_Lister_A118 

EMQU_2247 2336289 2336522 - hypothetical protein 

EfmU0317_0103 

 

EMQU_2248 2336533 2336661 - hypothetical protein InterPro: IPR010022: Protein of unknown function XkdX 

EMQU_2249 2336654 2337001 - hypothetical protein  

EMQU_2250 2337014 2339200 - hypothetical protein InterPro: IPR018913: Domain of unknown function DUF2479 

EMQU_2251 2339201 2340247 - gp19 InterPro: IPR011050: Pectin lyase fold/virulence factor; IPR012334: 

Pectin lyase fold; PHAST: PHAGE_Lister_A500 

EMQU_2252 2340247 2341275 - gp18 InterPro: IPR010572: Bacteriophage 53, Orf003; PHAST: 

PHAGE_Lister_A500 

EMQU_2253 2341284 2342114 - tail protein InterPro: IPR008841: Siphovirus tail component; PHAST: 

PHAGE_Staphy_StB20 

EMQU_2254 2342107 2347362 - tail protein InterPro: IPR013491: Caudovirus, tape measure, N-terminal; 

PHAST: PHAGE_Temper_1 

EMQU_2255 2347355 2347924 - hypothetical protein 

BCBBV1cgp48 

InterPro: IPR009660: Bacteriophage A500, Gp15; PHAST: 

PHAGE_Bacill_BCJA1c 

EMQU_2256 2347933 2348394 - hypothetical protein PHAST: PHAGE_Bacill_BCJA1c 
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Locus Tag Start End Strand Predicted Gene Product Note 

BCBBV1cgp47 

EMQU_2257 2348422 2348583 - hypothetical protein  

EMQU_2258 2348538 2349014 - tail shaft protein PHAST: PHAGE_Bacill_BCJA1c 

EMQU_2259 2349025 2349402 - hypothetical protein 

BCBBV1cgp45 

InterPro: IPR024411: Minor capsid protein, bacteriophage; PHAST: 

PHAGE_Bacill_BCJA1c 

EMQU_2260 2349402 2349764 - hypothetical protein 

BCBBV1cgp44 

InterPro: IPR021080: Minor capsid protein; PHAST: 

PHAGE_Bacill_BCJA1c 

EMQU_2261 2349764 2350099 - hypothetical protein 

BCBBV1cgp43 

InterPro: IPR019612: Minor capsid protein, putative; PHAST: 

PHAGE_Bacill_BCJA1c 

EMQU_2262 2350096 2350551 - hypothetical protein BCBBV1cgp42 PHAST: PHAGE_Bacill_BCJA1c 

EMQU_2263 2350578 2350742 - hypothetical protein  

EMQU_2264 2350739 2351626 - major capsid protein gp34 PHAST: PHAGE_Lactob_H 

EMQU_2265 2351640 2352230 - scaffold protein InterPro: IPR009636: Bacteriophage mv4, Gp20; PHAST: 

PHAGE_Entero_phiFL4A 

EMQU_2266 2352464 2353612 - hypothetical protein 

BCBBV1cgp37 

InterPro: IPR009319: Bacteriophage A118, Gp4, minor capsid; 

PHAST: PHAGE_Bacill_BCJA1c 

EMQU_2267 2353617 2354954 - portal InterPro: IPR006432: Portal protein, putative, A118-type; 

IPR021145: Portal protein; PHAST: PHAGE_Bacill_BCJA1c 

EMQU_2268 2355003 2355155 - putative minor capsid protein 1 PHAST: PHAGE_Strept_MM1 

EMQU_2269 2355170 2356456 - terminase large subunit InterPro: IPR004921: Terminase, large subunit; IPR006437: 

Bacteriophage terminase, large subunit; PHAST: 
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Locus Tag Start End Strand Predicted Gene Product Note 

PHAGE_Bacill_PBC1 

EMQU_2270 2356440 2357318 - terminase small subunit InterPro: IPR018925: Enterococcus phage phiFL1A,  terminase 

small subunit; PHAST: PHAGE_Entero_phiFL1A 

EMQU_2271 2357375 2357854 - hypothetical protein  

EMQU_2272 2358038 2358280 - hypothetical protein  

EMQU_2273 2358504 2359004 - putative 

N-acetylmuramoyl-L-alanine 

amidase 

InterPro: IPR002502: N-acetylmuramoyl-L-alanine amidase domain; 

PHAST: PHAGE_Entero_phiEF24C 

EMQU_2274 2359754 2359975 + hypothetical protein  

EMQU_2275 2360037 2360219 - hypothetical protein  

EMQU_2276 2360750 2361166 - transcriptional regulator ArpU family InterPro: IPR006524: Transcription activator, ArpU family; 

PHAST: PHAGE_Entero_phiFL1A 

EMQU_2277 2361247 2361684 - hypothetical protein 

HMPREF9495_01321 

 

EMQU_2278 2362324 2362446 - hypothetical protein  

EMQU_2279 2362449 2362838 - hypothetical protein  

EMQU_2280 2362835 2363125 - hypothetical protein  

EMQU_2281 2363115 2363663 - Gp35 protein InterPro: IPR012865: Protein of unknown function DUF1642; 

PHAST: PHAGE_Lister_2389 

EMQU_2282 2363660 2363860 - hypothetical protein  
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Locus Tag Start End Strand Predicted Gene Product Note 

EMQU_2283 2363857 2364324 - DNA cytosine 

methyltransferase 

InterPro: IPR013216: Methyltransferase type 11; PHAST: 

PHAGE_Entero_phiFL1A 

EMQU_2284 2364340 2364537 - hypothetical protein  

EMQU_2285 2364964 2365341 - ORF029 InterPro: IPR019096: YopX protein; IPR023385: YopX-like domain, 

beta barrel type; PHAST: PHAGE_Staphy_2638A 

EMQU_2286 2365338 2365469 - hypothetical protein  

EMQU_2287 2365481 2365702 - Hypothetical protein 

EfmE4452_2680 

 

EMQU_2288 2365709 2366116 - hypothetical protein  

EMQU_2289 2366119 2366616 - hypothetical protein  

EMQU_2290 2366603 2366923 - hypothetical protein  

EMQU_2291 2366917 2367081 - hypothetical protein  

EMQU_2292 2367071 2368033 - gp46 InterPro: IPR006343: Replication protein, DnaD/DnaB domain; 

IPR010056: Bacteriophage A500, Gp45, replisome organiser, 

N-terminal; PHAST: PHAGE_Brocho_BL3 

EMQU_2293 2368052 2368738 - conserved hypothetical protein InterPro: IPR010373: Protein of unknown function DUF968; 

PHAST: PHAGE_Entero_phiEf11 

EMQU_2294 2368689 2369477 - Orf14 InterPro: IPR009425: Single-strand annealing protein SAK3; 

PHAST: PHAGE_Lactoc_bIL285 

EMQU_2295 2369470 2369736 - hypothetical protein  

EMQU_2296 2369840 2370004 - hypothetical protein  
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Locus Tag Start End Strand Predicted Gene Product Note 

EMQU_2297 2370001 2370126 - hypothetical protein  

EMQU_2298 2370265 2370453 - hypothetical protein  

EMQU_2299 2370642 2370911 + hypothetical protein  

EMQU_2300 2370908 2371306 - hypothetical protein  

EMQU_2301 2371318 2372073 - putative anti-repressor protein KO: K07741; InterPro: IPR003497: BRO N-terminal domain; 

IPR005039: Bacteriophage P1, Ant1, C-terminal; PHAST: 

PHAGE_Staphy_phiMR25 

EMQU_2302 2372091 2372399 - hypothetical protein 

HMPREF0348_2593 

InterPro: IPR008489: Bacteriophage bIL285, Orf7 

EMQU_2303 2372403 2372606 - hypothetical protein  

EMQU_2304 2372912 2373250 + CI phage repressor protein InterPro: IPR001387: Helix-turn-helix type 3; IPR010982: Lambda 

repressor-like, DNA-binding; PHAST: PHAGE_Entero_phiFL1A 

EMQU_2305 2373260 2373664 + hypothetical protein InterPro: IPR010359: Protein of unknown function DUF955 

EMQU_2306 2373718 2373900 + hypothetical protein  

EMQU_2307 2373944 2374450 + integrase InterPro: IPR023109: Integrase/recombinase, N-terminal; PHAST: 

PHAGE_Strept_YMC_2011 

EMQU_2308 2374447 2375115 + putative integrase KO: K14059; InterPro: IPR002104: Integrase, catalytic; IPR011010: 

DNA breaking-rejoining enzyme, catalytic core; IPR013762: 

Integrase-like, catalytic core; PHAST: PHAGE_Clostr_phiC2 

 2375133 2375151 + terminal direct repeat: GTGGCAAATTTGTGGCAAA 

phiEmqu3 2556843 2597594    
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Locus Tag Start End Strand Predicted Gene Product Note 

 2556843 2556862 + terminal direct repeat: TAAAATTATTTAACTGTTAC 

EMQU_2478 2557383 2557706 - hypothetical protein  

EMQU_2479 2558030 2558395 + hypothetical protein  

EMQU_2480 2558984 2559577 - hypothetical protein FN1087  

EMQU_2481 2559567 2560919 - Transporter KO: K06926; InterPro: IPR007406: Prokaryotic chromosome 

segregation/condensation protein MukB, N-terminal 

EMQU_2482 2561039 2561932 - N-acetylmuramoyl-L-alanine 

amidase 

InterPro: IPR002502: N-acetylmuramoyl-L-alanine amidase domain 

EMQU_2483 2562001 2562258 - conserved hypothetical protein InterPro: IPR009708: Bacteriophage A118, holin 

EMQU_2484 2562260 2562493 - hypothetical protein 

EfmU0317_0103 

 

EMQU_2485 2562526 2564145 - hypothetical protein InterPro: IPR018913: Domain of unknown function DUF2479 

EMQU_2486 2564206 2566005 - hypothetical protein  

EMQU_2487 2566009 2568336 - hypothetical protein InterPro: IPR007119: Phage minor structural protein N-terminal 

domain; IPR010572: Bacteriophage 53, Orf003 

EMQU_2488 2568333 2569088 - phage putative tail component 

protein 

InterPro: IPR008841: Siphovirus tail component 

EMQU_2489 2569081 2574003 - putative minor tail protein InterPro: IPR013491: Caudovirus, tape measure, N-terminal; 

PHAST: PHAGE_Strept_MM1 

EMQU_2490 2573990 2574571 - hypothetical protein MM1p45 InterPro: IPR009660: Bacteriophage A500, Gp15; PHAST: 

PHAGE_Strept_MM1 
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Locus Tag Start End Strand Predicted Gene Product Note 

EMQU_2491 2574576 2574956 - hypothetical protein MM1p44 PHAST: PHAGE_Strept_MM1 

EMQU_2492 2575011 2575529 - putative major tail shaft protein PHAST: PHAGE_Strept_MM1 

EMQU_2493 2575530 2575928 - putative minor capsid protein 4 InterPro: IPR024411: Minor capsid protein, bacteriophage; PHAST: 

PHAGE_Strept_MM1 

EMQU_2494 2575928 2576293 - putative minor capsid protein 3 InterPro: IPR021080: Minor capsid protein; PHAST: 

PHAGE_Strept_MM1 

EMQU_2495 2576293 2576628 - hypothetical protein 

BCBBV1cgp43 

InterPro: IPR019612: Minor capsid protein, putative; PHAST: 

PHAGE_Bacill_BCJA1c 

EMQU_2496 2576625 2577080 - hypothetical protein 

BCBBV1cgp42 

PHAST: PHAGE_Bacill_BCJA1c 

EMQU_2497 2577111 2578220 - major capsid protein InterPro: IPR024455: Caudovirus, capsid; PHAST: 

PHAGE_Lister_A118 

EMQU_2498 2578233 2578799 - minor capsid protein InterPro: IPR009636: Bacteriophage mv4, Gp20; PHAST: 

PHAGE_Lactob_phig1e 

EMQU_2499 2579104 2580252 - minor capsid protein InterPro: IPR009319: Bacteriophage A118, Gp4, minor capsid; 

PHAST: PHAGE_Lactob_phig1e 

EMQU_2500 2580257 2581822 - portal InterPro: IPR006432: Portal protein, putative, A118-type; 

IPR021145: Portal protein; PHAST: PHAGE_Bacill_BCJA1c 

EMQU_2501 2581834 2583150 - putative large terminase 

subunit 

KO: K06909; InterPro: IPR006437: Bacteriophage terminase, large 

subunit; IPR006701: Caudovirales, terminase large subunit; PHAST: 

PHAGE_Strept_MM1 
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Locus Tag Start End Strand Predicted Gene Product Note 

EMQU_2502 2583147 2583857 - gp1 PHAST: PHAGE_Brocho_BL3 

EMQU_2503 2583898 2584176 - hypothetical protein  

EMQU_2504 2584205 2584387 - hypothetical protein  

EMQU_2505 2584534 2584743 - hypothetical protein  

EMQU_2506 2584917 2585336 - phage autolysin transcriptional 

regulator ArpU family 

InterPro: IPR006524: Transcription activator, ArpU family; PHAST: 

PHAGE_Entero_phiEf11 

EMQU_2507 2585418 2585705 - hypothetical protein  

EMQU_2508 2585702 2586004 - hypothetical protein  

EMQU_2509 2586001 2586222 - hypothetical protein  

EMQU_2510 2586219 2586905 - phage protein, putative InterPro: IPR012865: Protein of unknown function DUF1642 

EMQU_2511 2586919 2588208 - putative DNA methylase KO: K00558: DNA (cytosine-5-)-methyltransferase [EC:2.1.1.37]; 

InterPro: IPR001525: C-5 cytosine methyltransferase; IPR018117: 

DNA methylase, C-5 cytosine-specific, active site; PHAST: 

PHAGE_Strept_MM1 

EMQU_2512 2588211 2588558 - YopX superfamily protein InterPro: IPR019096: YopX protein; IPR023385: YopX-like domain, 

beta barrel type; PHAST: PHAGE_Entero_phiFL2A 

EMQU_2513 2588555 2588857 - hypothetical protein  

EMQU_2514 2588850 2589014 - hypothetical protein  

EMQU_2515 2589004 2589297 - hypothetical protein  

EMQU_2516 2589310 2590032 - putative DNA replication 

protein 

InterPro: IPR011991: Winged helix-turn-helix transcription repressor 

DNA-binding; PHAST: PHAGE_Lactob_c5 
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Locus Tag Start End Strand Predicted Gene Product Note 

EMQU_2517 2590036 2590722 - conserved hypothetical protein InterPro: IPR010373: Protein of unknown function DUF968; 

PHAST: PHAGE_Entero_phiEf11 

EMQU_2518 2590755 2591639 - putative replication protein InterPro: IPR009785: Lactobacillus prophage Lj928, Orf309; 

PHAST: PHAGE_Entero_phiEf11 

EMQU_2519 2591640 2592332 - putative single-strand DNA 

binding protein 

InterPro: IPR007499: ERF; PHAST: PHAGE_Entero_phiEf11 

EMQU_2520 2592478 2592642 - hypothetical protein  

EMQU_2521 2592639 2592764 - hypothetical protein  

EMQU_2522 2592911 2593153 - hypothetical protein  

EMQU_2523 2593193 2593420 - hypothetical protein  

EMQU_2524 2593432 2594157 - anti-repressor InterPro: IPR018873: KilA-N, DNA-binding domain; IPR018878: 

Bacteriophage bIL285, Orf6, C-terminal; PHAST: 

PHAGE_Lactoc_bIL285 

EMQU_2525 2594224 2594508 - hypothetical protein  

EMQU_2526 2594508 2594702 - toxin-antitoxin system, antitoxin 

component, Xre family 

InterPro: IPR010982: Lambda repressor-like, DNA-binding 

EMQU_2527 2594806 2595009 + hypothetical protein  

EMQU_2528 2595006 2595212 - hypothetical protein  

EMQU_2529 2595516 2595863 + repressor protein InterPro: IPR001387: Helix-turn-helix type 3; IPR010982: Lambda 

repressor-like, DNA-binding; PHAST: PHAGE_Strept_MM1 
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Locus Tag Start End Strand Predicted Gene Product Note 

EMQU_2530 2595872 2596303 + hypothetical protein MM1p03 InterPro: IPR010359: Protein of unknown function DUF955; 

PHAST: PHAGE_Strept_MM1 

EMQU_2531 2596361 2597500 + integrase InterPro: IPR002104: Integrase, catalytic; IPR011010: DNA 

breaking-rejoining enzyme, catalytic core; IPR013762: 

Integrase-like, catalytic core; IPR023109: Integrase/recombinase, 

N-terminal; PHAST: PROPHAGE_Oceano_HTE831 

 2597575 2597594 + terminal direct repeat: TAAAATTATTTAACTGTTAC 
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Table 5. Mobile elements in the E. mundtii QU 25 genome 

 
Locus Tag Start End Predicted Gene/Family 
Chromosome �  �  �  
EMQU_0167 167,691 168,935 ISCbt3 (IS607 family) transposase 
EMQU_0168 168,913 169,287 ISCbt3 (IS607 family) resolvase 
EMQU_0274 281,667 282,857 transposase like protein 
EMQU_0329 343,456 344,751 ISEfa11 (ISL3 family) transposase 
EMQU_0547 585,939 586,103 transposase like protein 
EMQU_0548 586,320 587,471 ISEfa4 (IS200/IS605 family) transposase 
EMQU_0622 659,557 660,564 ISEfa4 (IS200/IS605 family) transposase 
EMQU_0623 660,872 661,372 ISEfa5 (ISL3 family) transposase 
EMQU_0625 668,887 669,339 ISAac3 (IS200/IS605 family) transposase 
EMQU_0867 894,133 895,428 ISEfa11 (ISL3 family) transposase 
EMQU_1329 1,405,266 1,405,475 ISH7A (ISNCY family) transposase 
EMQU_1442 1,515,200 1,515,487 transposase like protein 
EMQU_1566 1,626,597 1,628,087 transposase like protein 
EMQU_1579 1,636,717 1,638,012 ISEfa11 (ISL3 family) transposase 
EMQU_1657 1,732,315 1,732,443 transposase like protein 
EMQU_1804 1,874,140 1,874,724 ISBce13 (IS3 family) integrase 
EMQU_1805 1,874,788 1,874,961 transposase like protein 
EMQU_1806 1,875,012 1,875,194 ISBce13 (IS3 family) transposase 
EMQU_1936 2,024,246 2,025,682 ISEnfa2 (IS1182 family) transposase 
EMQU_2069 2,158,940 2,159,881 ISEnfa2 (IS1182 family) transposase 
EMQU_2070 2,159,881 2,160,375 ISEnfa2 (IS1182 family) transposase 
EMQU_2237 2,324,316 2,325,725 transposase like protein 
EMQU_2469 2,548,026 2,549,321 ISEfa11 (ISL3 family) transposase 
EMQU_2619 2,690,281 2,690,475 ISEfa12 (IS1182 family) transposase 
EMQU_2784 2,886,612 2,888,132 transposase like protein 
EMQU_2859 2,978,145 2,979,440 ISEfa11 (ISL3 family) transposase 
pQY182 �  �  �  
EMQU_3010 118,891 119,145 ISBce13 (IS3 family) transposase 
EMQU_3011 119,196 120,017 ISBce13 (IS3 family) integrase 
EMQU_3055 154,453 155,754 IS1476 (ISL3 family) transposase 
EMQU_3064 165,064 166,293 ISEnfa110 (IS110 family) transposase 
pQY082 �  �  �  
EMQU_3088 5,781 7,100 IS1675 (IS4 family) transposase 
EMQU_3094 13,439 14,758 IS1675 (IS4 family) transposase 
EMQU_3155 74,049 75,368 IS1675 (IS4 family) transposase 
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Table 6. BLAST homology search against nr database for five plasmids 

 

Description  Query cover  Identity E value  

pQY182    

Enterococcus mundtii plasmid pCRL10, partial sequence 5% 84% 0.0 

Enterococcus faecium DO plasmid 1, complete sequence  2% 89% 0.0 

Enterococcus faecium plasmid pM7M2, complete sequence  2% 89% 0.0 

pQY082     

Enterococcus faecium Aus0004 plasmid AUS0004_p1, complete sequence 48% 89% 0.0 

Enterococcus faecium DO plasmid 3, complete sequence 46% 86% 0.0 

pQY039    

Enterococcus hirae ATCC 9790 plasmid pTG9790, complete sequence 23% 86% 0.0 

pQY024    

Enterococcus faecalis strain E99 plasmid pBEE99, complete sequence 3% 89% 0.0 

pQY003    

Enterococcus faecium strain 9631160-1 (AHA15) plasmid pRI1, complete sequence 45% 83% 0.0 

Enterococcus faecium Aus0004 plasmid AUS0004_p3, complete sequence 42% 77% 0.0 
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Table 7. Bacteriocin activity and immunity of Enterococcus mundtii strains 

 

  Bacteriocin 

producer a 

 

Indicator strain E. mundtii QU 25 E. mundtii QU 2 E. mundtii JCM 8731T 

E. mundtii QU 25 − − − 

E. mundtii QU 2 − − − 

E. mundtii JCM 8731T + + − 

E. faecalis JCM 5803T + + − 

L. sakei JCM 1157T + + − 
a +, growth inhibition of indicator strains; −, no inhibition of indicator strains 

 



 124 

 
 

Figure 8. Gene clusters for early metabolism of xylose and the pentose phosphate pathway in E. mundtii QU 25 

(A) Organization of the gene cluster. Numbers below arrows indicate feature code (EMQU_XXXX). (B) Metabolic pathway for lactic acid 

production from xylose and genes presented in the gene clusters. 
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Figure 9. Metabolic pathways for lactic acid production from xylose and genes encoded by 

QU 25 genome 

xylA, xylose isomerase (EMQU_2810); xylB, D-xylulose kinase (EMQU_2805) ; 

tkt transketolase (EMQU_1275, EMQU_2812); tal, transaldolase (EMQU_2814); xfpA, 

phosphoketolase (EMQU_1837); ack, acetate kinase (EMQU_2620); pta, 

phosphotransacetylase (EMQU_2119); aldH, acetaldehyde dehydrogenase (EMQU_2205); 

adh, alcohol dehydrogenase (EMQU_1129, EMQU_1829, and EMQU_2109) 
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Figure 10. Overview of KEGG pathway map of QU 25. This map was generated by KEGG Atlas (http://www.genome.jp/kegg/atlas.html). 

2014/03/15 9:18KEGG Atlas - Metabolic pathways

1/1 ページhttp://www.kegg.jp/kegg/atlas/?01100

 Metabolic pathways -Enterococcus mundtii

 P  
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Figure 11. Number of genes related to lactic acid fermentation among allied enterococcal species using KO (KEGG Orthology) gene assignment 
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Table 8. Number of lactate production-related KO (KEGG Orthology) genes in each Enterococci species. 

 

KEGG Pathway KO Description 
E. 

mundtii 
QU 25 

E. 
mundtii 
ATCC 

882 

E. 
faecium 

DO 

E. 
faecium 
Aus000

4 

E. 
hirae 

ATCC 
9790 

E. 
casselifl

avus 
EC20 

E. 
faecalis 
V583 

00030 Pentose phosphate 
pathway K00615 transketolase [EC:2.2.1.1] 4a 3b 1 1 1 3b 0 
00030 Pentose phosphate 
pathway K00616 transaldolase [EC:2.2.1.2] 1 2 0 0 0 0 0 
00030 Pentose phosphate 
pathway K01621 

phosphoketolase 
[EC:4.1.2.9] 1 1 0 0 0 1 0 

00040 Pentose and 
glucuronate 
interconversions K00854 xylulokinase [EC:2.7.1.17] 1 1 0 0 0 1 1 
00040 Pentose and 
glucuronate 
interconversions K01805 

xylose isomerase 
[EC:5.3.1.5] 1 1 0 0 0 1 1 

00500 Starch and sucrose 
metabolism K01198 

xylan beta-1,4-xylosidase 
[EC:3.2.1.37] 2 2 1 1 0 1 0 

00620 Pyruvate metabolism K00925 acetate kinase [EC:2.7.2.1] 1 1 1 1 1 1 1 

00620 Pyruvate metabolism K00625 
phosphate acetyltransferase 
[EC:2.3.1.8] 1 1 1 1 1 1 1 

00620 Pyruvate metabolism K00016 
L-lactate dehydrogenase 
[EC:1.1.1.27] 2 2 2 2 2 1 2 

00620 Pyruvate metabolism K03778 
D-lactate dehydrogenase 
[EC:1.1.1.28] 1 1 1 2 0 0 1 

KO (KEGG Orthology) assignments were done using KAAS (KEGG Automatic Annotation Server).14 
a Two genes are considered to be pseudo-genes due to their short length. 
b One gene is considered to be a pseudo-gene due to its short length. 
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General Discussion 

 

In this thesis, I address the establishment of analysis methods for microbial 

genomics using NGS and their applications to resequencing and de novo assembly of 

microbial genomes. 

 

Development of the analysis pipeline and its application to Bacillus subtilis 

Since NGS produces a huge amount of data, researchers face difficulties in the 

post-sequencing in the bioinformatical analysis. This field is new and progresses rapidly, and 

numerous software programs have been actively developed. However, even today, there is no 

integrated software for every application of NGS at least to my knowledge. To exert 

maximum power of NGS, it is necessary to combine a variety of software tools and integrate 

their analysis results. These situations in bioinformatical analysis are laborious and 

time-consuming, especially in dealing with a large number of samples. 

In order to make bioinformatical analysis more efficient, I developed the analysis 

pipeline for NGS data, NSAP. It is a command-line-based pipeline running in Linux 

environment, which is written in the Ruby script language. With a recipe file that describes a 

protocol of analysis, NSAP executes automatically a suite of software for quality control of 

reads, alignment, de novo assembly, detection of structural variants, etc. 

One of the popular pipelines for NGS data used in Japan is DDBJ read annotation 

pipeline.1 This pipeline was developed by DNA Data Bank of Japan (DDBJ). It is a 

web-based pipeline and uses the supercomputer in DDBJ. A web-based pipeline is 

user-friendly for users with limited skill in informatics. However, a web-based pipeline is 
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difficult to customize for own purpose and not suitable for handling a large number of 

samples, while NSAP is customizable due to Ruby script language. In addition, users can 

specify many samples using a csv formatted recipe file which is editable by Excel. NSAP 

markedly shortens time of bioinformatical analysis. NSAP is the fundamental software used 

in all studies described in this thesis. 

In chapter I, I applied NSAP to re-sequence Bacillus subtilis strain 168. This strain 

is widely used in Japan as a model microorganism of Gram-positive bacteria. It was 

distributed to various laboratories in Japan in the 1990s when the sequencing consortium of B. 

subtilis 168 commenced operations. After 20 years from its distribution, variations in growth 

phenotypes have been reported from several laboratories. To uncover laboratory-specific 

variations of B. subtilis 168 strain in Japan, I re-sequenced these laboratory strains including 

different isolates (BGSC-1A1), and identified the base variations among them using NSAP 

and COVA (one of the software which I developed and described in chapter II). 

Although the differences in each laboratory stock of strain 168 were few, some had 

unique variations which might include a still hidden phenotype. These variations might have 

been caused by the differences in storage conditions in the laboratories or the differences 

among colonies of the original stock. These results revealed the necessity to understand the 

genetic differences between the wild-type (parental) strain in each laboratory and the 

reference strain by re-sequencing analysis, and to pay more attention in managing laboratory 

strain stocks. This study also demonstrated the dramatically accelerating progress of 

re-sequencing application in bacterial genetics and the usefulness of NSAP. 
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Development of the variant annotation software and its application to yeast 

To understand genotype-phenotype relationship, an evaluation of mutational effect 

such as a substitution of amino acid is needed. In addition, it is effective to sequence 

genomes of multiple strains showing the same phenotype and to pinpoint common variant(s) 

among them. Although there have been dozens of software for sequencing reads alignment 

and variant identification, only few software for functional annotation of variants for bacteria 

are available. One of the popular software for this purpose is ANNOVAR.2 This tool is 

suitable for higher organisms such as human. Moreover, few tools can compare variants 

among multiple samples. 

Thus, in chapter II, I developed the software COVA, which is a Ruby-based tool 

for variant comparison and functional annotation, especially useful for bacterial mutation 

analysis. COVA is used in re-sequencing studies in this thesis (Chapter I and II). COVA can 

annotate SNVs, InDels, and other types of variants such as SVs and coverage of genes. In 

addition, COVA can compare variants among multiple samples, which helps to pinpoint 

causal variation(s) relating to phenotype. COVA can utilize annotation data sets conformed to 

Genbank Format which is easily downloadable from NCBI website. Before development of 

COVA, I had done this process manually using online genome databases, Excel software, and 

sequence analysis software. COVA automates such laborious and time-consuming process 

and greatly shortens time of bioinformatical analysis. COVA is freely available at 

http://sourceforge.net/projects/cova/ 

In chapter II, I applied COVA to re-sequence Saccharomyces cerevisiae. 

Re-sequencing study of S. cerevisiae has done as the evaluation of a novel mutagenesis 

technique using error-prone DNA polymerase δ (Polδ). This technique is based on the 
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disparity mutagenesis model of evolution, and has been successfully employed to generate 

novel microorganism strains with desired traits. However, little is known about the spectra of 

mutations caused by disparity mutagenesis. Using NSAP and COVA, I evaluated the 

introduced mutations caused by disparity mutagenesis and showed that they have a broader 

spectrum of nucleotide changes compared with that of the commonly used chemical mutagen 

ethyl methanesulfonate (EMS). I demonstrated that a proofreading-deficient and low-fidelity 

polδMKII mutator is a useful and efficient method for the rapid strain improvement based on 

in vivo mutagenesis. I also demonstrated the possibility of application of NGS to the 

molecular breeding of microorganisms. 

 

Establishment of methods for de novo assembly and annotation and their applications to the 

determination of the complete genome of enterococci 

NGS makes it easy to determine a draft genome of bacteria. A typical draft genome 

comprises several tens or hundreds of contigs/scaffolds. However, draft genomes contain 

only partial sequences including repetitive sequences such as rRNA operons, phage regions, 

and insertion sequences. Thus they are insufficient to analyze the entire genome structure.. In 

chapter III, I aimed to determine a complete genome sequence with only NGS. I targeted the 

bacterium Enterococcus mundtii QU 25, which can ferment both cellobiose and xylose to 

produce L-lactic acid efficiently. 

I challenged the combination of three sequencing platform, Illumina GAII, 454 GS 

FLX+, and PacBio RS. With only the third-generation sequencer PacBio RS, I successfully 

obtained the complete genome sequence of E. mundtii QU 25 without conventional Sanger 

sequencing. I also evaluated an accuracy of sequencing and assembly of PacBio using a 
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whole-genome mapping technology and second-generation sequencing. It demonstrated that 

the chromosomal sequence generated by PacBio RS achieved high accuracy. Through the 

genome annotation and comparative genome analysis, I tried to elucidate the mechanism of 

the efficient L-lactate production from xylose of the QU 25 strain. This is the first reported 

complete genome sequence in E. mundtii. So the obtained data in this study provide insights 

into lactate production in this bacterium and its evolution among enterococci. 

 

Conclusion 

In this thesis, I established the analysis methods for microbial genomics using NGS. 

In chapter I, I developed the automated analysis pipeline NSAP for efficient bioinformatical 

analysis with a large number of samples, and I applied it to re-sequence B. subtilis. NSAP 

successfully shortened the analysis time. NSAP also enabled repetitive analysis for 

optimization of parameters, contributing the improvement of accuracy of analysis. In chapter 

II, I developed the variant annotation software COVA for evaluation and comparison of 

detected variations, and I applied it to re-sequence S. cerevisiae. COVA enabled rapid 

analysis of the evaluation of the effects of variations, and narrowed down causative 

mutation(s) of a given phenotype. In chapter III, using a third-generation sequencer, I 

established the methods for determination of a novel complete genome sequence, genomic 

annotation, and genomic comparison. Then I applied them to determine the novel genome 

sequence of E. mundtii QU 25. With the recent progress of the third-generation sequencer, I 

demonstrated the determination of a complete genome sequence without any finishing 

procedure. Now NGS is becoming a new and powerful research method for all 

microbiologists and certainly changing their working way. I believe the analysis methods 
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established in this thesis will contribute to not only microbiology but also industrial 

applications such as molecular breeding. 
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ABBREVIATIONS 

 

EMS: ethyl methanesulfonate 

InDels: insertions and deletions 

SC: synthetic complete 

SNP: single nucleotide polymorphism 

SNV: single nucleotide variant 
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