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ABSTRACT

This research thesis is structured in six Chapters including the general introduction
as Chapter 1 and the general conclusion as Chapter 6 to address the research topics

summarized in this section.

In Chapter 2, we focused at the problem of abiotic factors (herein microclimate)
of labor constrained small-scale farmers in Japan. The approach based on ICT
technological transfer of smart agriculture system to labor constrained small-scale
horticultural farmers to improve tomato production management. The solution to
this was applied usage and deployment of a wireless sensor network. The real-time
information composed of commercial inexpensive wireless sensor network devices and

developed database for crop environment monitoring and management.

In Chapter 3, we studied factors to enhance impactful use of computer vison based
early detection approach to tackle tomato pest Tuta absoluta (T. absoluta). A
comprehensive study of the demography and farmer information flow was done in
the areas mostly affected by 7. absoluta. We examined tomato farmers knowledge on
tomato pest 7. absoluta damage that could be used to devise recommended platform for
introduction of computer vision (CV) based approach to tackle 7. absoluta. With the
field experiments we carried out, we showed a high correlation of decreased marketable
tomato due to 7. absoluta damages. Therefore to solve this problem, a need for early

detection was required which was the basis for Chapter 4 and 5.

In Chapter 4, we detailed the need for early pest detection for effective management



option at early stages of tomato production to avoid economic losses. The main goal
was to develop computer vision based tomato pest early identification and quantification
tools that could be used to strengthen phytosanitary capacity and systems for effective
management option of 7. absoluta. In this Chapter, the specific research’s objectives
was: (1) to develop a T. absoluta early identification Convolutional Neural Network
(CNN) model under commonly practiced agriculture practices. (2) to develop early
detection and quantification CNN models for tomatoes infested by 7. absoluta damage

characteristics and quantification to enhance early detection.

In Chapter 5, we focused on using multispecral image analysis to investigate spectral
characteristics and applied in detection of 7. absoluta infested tomato plants under
commonly practices agriculture practices using gradient boosting approach. Results
showed that the CatBoost model of vegetation index NDVI, GNDi, NRI, and MARI
imafeg could be used to detect diseased leaves. Further, Tree Explainer algorithm
adopted on SHAP values showed that NDVI and GNDI were the indicators with the
highest contribution to the trained model, and that NIR reflection information would be

effective in detectiong tomato pest Tuta absoluta damage.

In the final Chapter 6, we draw conclusions and recommendations based on
previous Chapters that focused on the integration of ICT and artificial intelligence
techniques to enhance tomato production based on a data driven emerging technological

approach.
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CHAPTER 1

GENERAL INTRODUCTION

1.1 Food Demand and Production

A 60% increase (Figure 1.1) in agriculture production including vegetables is required
to meet the projected 9.1 billion world population by 2050. Apparently 795 million
lack adequate food supply, the majority from Sub-Saharan Africa (SSA) (FAO 2015).
The Figure 1.2 clearly shows the gap in population projections amongst high income,
low/middle income and high income countries '. We see a higher increase in the lowest
income countries, therefore the majority low income countries could be negatively

affected when the increased food demand isn’t met.

Among foods, vegetables have the potential to contribute on the need to increase food
demand to meet the required food shortage. FAO 2013 statistics show that, vegetation
production increased from 0.9 billion Metric tonnes (Bt) in 2003 to 1.72 Bt in 2013.

The European alone has 10% of total vegetable production output. A high income

! According to World Bank Atlas method, countries have been grouped as high-income, upper middle
income, lower middle income and low-income based on per capita gross national income (GNI). In this
research, upper middle and lower middle income are termed as Low/Middle income, high-income as high
income and low-income as lowest income. Countries with less than $1,035 GNI per capita are classified
as low-income countries, those with between $1,036 and $4,085 as lower middle income countries, those
with between $4,086 and $12,615 as upper middle income countries, and those with incomes of more
than $12,615 as high-income countries
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Figure. 1.2 World Population Projection based on country income levels

Source: United Nations.

country such as Japan, tomato production is about 730 MT, cucumber about 562 MT.
Vegetation production being practiced on about 54n000 ha of land which is about 12%
of total cultivated agriculture land. Contrarily, tomato production in African countries
is about 19.1 MT, onions about 10.8 MT. Among, the vegetables, tomato are the highly

produced vegetables which was a focus for this research (Figure 1.3).
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Figure. 1.3 Global production of selected top seven vegetables
Source: FAO.

1.2 Importance of Vegetable production

The World Health Organization (WHO) recommends a minimum vegetable intake of
about 400g per day to prevent chronic diseases such as heart diseases, cancers and
diabetes. Fruits and vegetables are essential sources for the micro-nutrients needed
for human healthier diets. Some of the nutrients for instance Potassium in vegetables
helps to maintain healthy blood pressure. The dietary fiber content also reduces blood
cholesterol levels and may lower the risk of heart disease. Folate (folic acid) reduces
the risks of birth defects, and vitamin A keeps eyes and skin healthy. Also vitamin C

helps to keep, teeth and gums healthy and also aids in iron absorption.

Economically, vegetables also contribute to income and employment for small-scale
farmers. Worldwide per capita consumption is estimated to be 20% -50% which is

short of the minimum FAO standard (Dinham 2003, Matsane and Oyekale 2014).



1.3 Research scope and Focus

1.3.1 Challenges of vegetation production

The potentiality of vegatable to increase food demand is still subjected to challenges.
Vegetables are highly vulnerable to crop failure owing to drought, adverse weather
conditions (herein abiotic) and, pests, diseases and weeds (herein Biotic) (Nordey
et al.,2017). The challenges greatly lead to negative economic impact thus loss of
profit for small farmers and eventually higher cost to consumers (Matsane and Oyekale

2014).

1.3.2 Marginalized group low-resource farmers

In this research, we focused on marginalized group of low-resource small-scale farmers
(small scale farmers here are farmers with average farm land size of 1.5ha). We further
considered the labor constrained small-scale farmers. The target group of the labor
constrained small-scale farmers in this study are the aged farmer, who are 64% of
agriculture workers with average age of 65 years. The second target group was the
ICT resource constrained in SSA. With a population of about 50 million who depend

on agriculture.

1.3.3 Research objective

The core target of this study was the marginalized small- scale farmers, categorised
as labor constrained and ICT constrained small-scale farmers in Japan and SSA
respectively. The research goal was to approach the challenges using a data-driven
emerging technological transfer to enhance tomato production with a focus to
reduce losses due to biotic (herein tomato pests Tuta absoluta) and abiotic (herein

4



microclimate) factors, with a focus to increase yield and alleviate food security concerns

using ICT and Artificial Intelligence techniques.



CHAPTER 2

SMART AGRICULTURE

APPLICATION IN LABOR

CONSTRAINED SMALL SCALE

HORTICULTURE FARMING.

2.1 Introduction

The population of Japanese agricultural workers is decreasing, and aging is progressing
at the same time. It should be noticed that the average age of farmers in Japan is
65.8 years old, and the ratio of workers aged 65 and above to the total agricultural
population is 61.8%. We therefore could say that Japan is experiencing the arrival of
a super-aged society and a full-fledged population-declining society, this then poses
a concern of serious labor shortage in the near future. There are efforts to make
agriculture a progressive industry, such efforts include full utilization of resources and

the potential of rural areas through technological innovation (Kameoka and Hashimoto



2015, Nicolosi et al. 2017).

The initiative of the Ministry of Agriculture, Forestry, and Fisheries (MAFF) of Japan is
to promote the introduction of smart agriculture aiming for labor-saving and efficiency
improvement using state-of-the-art robot technology, and ICT and also to undertake
research and development initiatives on-site by introducing cutting-edge technologies

to realize smart agriculture (Singh et al. 2016).

Therefore, Wireless Sensor Network (WSN) as a smart agriculture technique was used
in this study. WSN devices and various types of optical sensors are assumed to be a
basic technology in smart agriculture which intends to achieve harmony with economic
development and sustainable agro-ecosystem urges Fitz-Rodriguez et al. (2010). Bauer
et al. (1984) urgue that WSN devices have been under rapid development and they have

become a promising application in agriculture.

Previous studies on smart agriculture have been conducted, for instance Kameoka and
Hashimoto (2015) conducted demonstration experiments using WSN in a mandarin
orange orchard and in a vineyard to promote smart cultivation management. Bhatnagar
et al. (n.d.) in their work, studied potato crop against phytophthora (a genus of water
mold) by monitoring microclimate (humidity and temperature) using a large-scale WSN
devices. The system had intentions of generating a policy to protect the crop against
fungal disease based on the collected data. Kameoka et al. (2017) also developed a new
WSN with a weather station and a soil water potential sensor that enabled long-range
wireless communication, data acquired was standardized and used to create a web
service that offered various kinds of phenological indices to farmers in the field (Kharel

et al. 2020).



In fact, recent technologies in Japan have been initiated by large technological
companies based on cloud computing service such as in the work of Fujino et al.
(2016). Fujitsu’s Akisai Food and Agriculture Cloud, the service is designed to
provide comprehensive support to all aspects of agricultural management, such as
administration, production, and sales in the open-field cultivation of rice and vegetables,
horticulture, and animal husbandry (Suga and Okuyama 2016). Moreover, the Kubota
Smart Agricultural System (KSAS) helps visualize agriculture business operations. The
various data are collected from rice paddies and uploaded to the cloud server. The data
is shared by the farmer, and the manager then the data can be analyzed to yield various
information. The information can be easily accessed through a PC or a handheld device
connected via a wireless Local Area Network (LAN). Data is collected in real time
by agricultural machinery via the wireless LAN during operation (KUBOTA REPORT,

Business and CSR Activities 2016 n.d.).

We summarized Ministry of Agriculture Fishery and Forestry report of Japan (MAFF)
smart agriculture catalog that contained 150 recognized types of smart agriculture
systems. As shown in Figure 2.1, smart agriculture is subdivided into five categories i.e.
data management (11%), cultivation management (16%), environmental management
(7%), automatic and work mitigation (39%), and sensors for monitoring (28%). This
research was an integration of all these categories (MAFF: (Ministry of Agriculture
Fishery and Forestry, Japan, 2018) n.d.). It should be noted that, in Japan, smart
agriculture application has been realized in farm management, plant growth diagnosis,
land preparation, fertilizer application, pesticide application, water management, weed
control, harvesting etc. Price of KSAS basic plan is from 35 USD per month. Cost

of Akisai service is from 400 USD to 1000 USD per month. In addition to cost, it is



difficult to introduce smart agriculture in small scale horticultural facilities due to the
lack of knowledge and understanding of advanced technologies of smart agriculture.
Fitz-Rodriguez et al. (2010) claim that the fear that farmers cannot handle advanced
technologies of smart agriculture when introduced is considered to be a barrier and the
spread is delayed (MAFF: (Ministry of Agriculture Fishery and Forestry, Japan, 2018)

n.d.).
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Figure. 2.1 A summary of 150 companies smart agriculture system categories in Japan.
Source: MAFF.

This research therefore was in support of MAFF policies on research efforts to support
cutting-edge technological ICT applications in agriculture and also to reduce the cost
of expensive smart agriculture systems. The main aim of our research was to establish
alternative approaches to ICT development and their applications in horticultural
agriculture through the transfer of new advanced technologies to small-scale farmers
in a collaborative support from research institutes to improve agriculture production

management.



2.2 Research objective

In this study, we introduced and demonstrated a simplified smart agriculture
system with real-time information capability that could be used for monitoring crop
environment and crop management in a greenhouse at limited resource expense. We
used inexpensive WSN devices and collaborated with tomato greenhouse farmers in

Nara prefecture in Japan.

Real-time microclimate conditions were monitored using WSN devices and daily
activities were collected during crop growth and stored data in the developed web DB.
We used Growing Degree Days (growing degree units, GDD) technique to monitor crop

growth (McMaster and Wilhelm 1997).

Nicolosi et al. (2017) showed the importance of crop microclimate in crop growth
monitoring using cumulative GDD technique. Also, Miller et al. (2001) considered used
GDD to monitor crop development, the assumption being that development is limited
to a certain threshold. In addition, daily activity data were gathered and stored in a
Google Drive spread sheet as explained in proceeding sections. Crop calendars were
also embedded into the web DB for tomato farms (tomato cultivation is about ten crop
growth cycles per year). We further showed microclimate spatiotemporal distributions
within tomato greenhouse based on GDD. Conclusions of our study were drawn on how
important the developed smart agriculture would be deployed by small-scale farmers

such as the one discussed in this paper.
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2.3 Materials and Methods

2.3.1 Smart agriculture system architecture

The smart agriculture system shown in Figure 2.2 was deployed on already existing
tomato farmers existing greenhouse facility. The tomato greenhouse uses the soil-less
cultivation technique called nutrient film technique (NFT) (Zekki et al. 1996). The
system’s architecture consisted of physical components for data collection i.e. WSN
connection for microclimate data, PC for daily activity data. Microclimate data
collected were stored in the WSN device cloud accessible by internet provided by
installed Wi-Fi connection. PC installed with Google Drive spread sheet was accessible
to a developed web DB for input of daily activities data such as fertilizer usage, harvest
data and so on. Data collected were stored on rental server’s database that was also
used to host the web DB. WSN devices were distributed at and located in places for
convenient accessibility due to the limitation of Wi-Fi connection between the base
station and Wi-Fi router, and between the base station and connected indoor and outdoor
modules. More details of deployed sensors, greenhouse layout, database is explained in

proceeding sections

2.3.2 Sensors deployed

WSN devices used for the smart agriculture system was purchased from Netatmo
(Netatmo n.d.). The WSN devices are equipped with sensors for air temperature,
humidity, barometer, carbon dioxide meter, and sound meter. They are made of a
single piece of durable aluminum shell and are UV resistant. The Netatmo modules

are shown in Figure 2.3. Two main types of modules were used, indoor modules
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Figure. 2.2 An illustration of smart agriculture system architecture composed of Netatmo
WSN devices for microclimate data collection, a Wi-Fi router for the Internet
connectivity, a PC for data inputs and DB server for data storage and functions,

like a crop calendar and so on.

Source: Author.
and outdoor modules. The indoor modules are of two categories i.e. base station
and additional module. The base station is powered by a USB wall adapter while the
outdoor modules and additional modules are powered by two triple-A batteries (up to
2 years lifespan). Wi-Fi router (Wi-Fi 802 b/g/n compatible (2.4 GHz) with supported
security Open/WEP/WPA/WPA?2) with internet access was required for the sensors to
send data to Netatmo cloud server. The WSN devices are compatible with i0OS, Android
4.0 minimum and windows 8.0 minimum operating systems. The additional modules
and outdoor modules send their measurements to the base station via bluetooth. Using
Wi-Fi access point, the indoor module then sends both its own measurements and other

modules connected to it measurements to a registered netatmo account. The netatmo

12



data was viewed using netatmo user interface as shown by the mobile dashboard in

figute 2.4.

nelatr ‘
\

netatr

netatm

Figure. 2.3 Showing the deployed wireless sensors used, Netatmo. From left to right are;
Outside model, Indoor model(Base station), Additional Module, wind gauge and
rain gauge. All Outdoor modules are completely weatherproof.

Source: Netatmo (Netatmo n.d.).

2.3.3 Data transmission

The system’s data are categorized into two, microclimate data collected by the WSN
devices and daily activities. The WSN devices collected data at a 5S-minute interval
(For analysis we used 30-minute interval data). Daily activities consisted of daily
harvest such as fertilizer usage (calcium, nitrate solutions, Electrical Conductivity (EC)
concentrations, pH). Data collected by the developed web DB consisted of planting
and harvest duration dates, these data were collected and input manually using the PC
installed with Google Drive spread sheet. The data input was managed by greenhouse

employee who was ICT literate. The Wi-Fi router cost 70 USD and monthly running
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Figure. 2.4 Showing the deployed wireless sensors used, Netatmo mobile user interface
dashboard

Source: Netatmo (Netatmo n.d.).

cost for 1GB was 4 USD. 0.3 MB of data is transmitted daily per module, thus 0.9 MB
per month for each module. A total of 90 MB of data is transmitted from the 10 WSN

devices per month.

2.3.4 Data storage

In our proposed smart agriculture system, as mentioned earlier, daily activities data
was collected using a PC. A web DB as shown in Figure 2.5 hosted on a rental
server was developed for daily activities data entry such as planting and harvest dates,

number of transplanted seedlings and so on. The server composed of a rational MySQL
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database for storage of data from Google Drive’s spread sheet, daily activity data and
microclimate data from netatmo cloud server. Using planting and harvesting dates data
of individual greenhouse block that is stored in the database, a crop calendar 2.6, was

created automatically and embedded into the web DB 2.5 .
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Figure. 2.5 A web database used for collection of farm daily activities such as planting date,
nursery planting dates, transplanting dates, harvest dates.
NB. Japanese characters used since the system was designed for Japanese farmer.

Source: Author.

2.3.5 Deployment in tomato greenhouse

The smart agriculture system was used on tomato greenhouse of six blocks as shown
in Figure 2.7 (c) of greenhouse with an area of 2500 m?, angle roof of 3.5 m high and
an internal sheeting 3m high. Tomato production is done in a rotation cycle within
one greenhouse. Using NFT wherein a very shallow stream of water containing all the
dissolved nutrients required for tomato growth is re-circulated past roots of the plants
in each row in soilless beds (a double row of 40 cm wide, 40 cm above floor and 80
cm apart each double row). Supplied nutrient solution consist of calcium solutions
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Figure. 2.6 A crop calender showing various complete crop growth cycle. Greeen represent
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Source: Author.

(CaCl,/MgS0O,) and nitrate solution. The nutrient solutions levels are controlled by
determining their EC and pH. Tomato seedlings are grown in a separate nursery
chamber before transplanted to the greenhouse. Blocks of the same size are F, E, and
D and block A, B, and C. WSN devices were distributed in the tomato greenhouse as
shown in greenhouse layout Figure 2.7. The WSN devices were installed 2 m above
the floor as shown in Figure 2.7(a) to ensure that the microclimate near the tomato
plants is measured. The tomato plants are supported by stakes to about 2.5 m high as
shown in Figure 2.7 (b). In this research, microclimate parameters between July 2017
and December 2018 were considered for analysis. In the greenhouse layout, two WSN
devices were used to collect data of blocks A, B and C. The WSN devices were installed

at the boundaries since the block sizes were relatively smaller compared to block D, E
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Figure. 2.7 (a) WSN device in greenhouse, (b) block within greenhouse and (c) greenhouse
layout showing the location of WSN devices. Blue, green and red points are WSN
devices. Red points; base station modules that receive data from additional
modules, green points and outdoor modules (blue points) connected via Bluetooth
(blue dashed lines) to their respective base stations. Black dashed lines; block
boundaries. Black solid lines; greenhouse boundaries. The black point with three
curved lines; Wi-Fi router. Red boxes in (c); heating facilities.

Source: Author.

2.3.6 Greenhouse microclimate monitoring approach

Monitoring of crop growth development was done within greenhouse blocks for
different complete crop cycle. Snyder et al. (1999) urge that heat unit herein GDD,
are often used to predict the rate of phenological development of plant species.
Phenological developmental rate increase approximately linearly as a function of air
temperature, and heat units are a measure of the time duration at various temperatures,
this eventually makes GDD a good fit to quantify phenological development. However,

development rates are assumed to be insignificant when the air temperature is below
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the threshold termed as base temperature. When the temperature is more than the base
temperature, then GDD is equal to observed air temperature minus the base temperature
as shown in equation 2.1. Therefore, a bigger difference between the air temperature
and base temperature implies more GDD and a faster development rate. Air temperature

variables used were transformed to GDD using the following equation;

Tmean - Tbase ) if Tmean > Tbase

0, if Tmean < Tbase

GDD = 2.1)
Tmean - (Tmax + Tmin) /2

1
Thase = 10°C
\

Tomean 1S the mean daily air temperature (average of daily maximum (T},,,) and minimum
temperature (Tpn), Thase is the threshold or base temperature, we used 10° C (Snyder
et al. 1999) as the base temperature. Whenever, the 7T'e., is less than the threshold (

T mean>T base)» GD D are set to zero (GDD = 0).

GDD within each respective block were used to monitor the vegetative growth period
and harvest periods. For each block, the average of GDD for two WSN devices was
used. GDD were then used in real-time monitoring of crop growth stages from the time
tomato seedlings were transplanted to the end of crop cycle herein last harvest date.
The collected crop harvest data and was manually input using a PC that was located
in the greenhouse and eventually stored in web DB. Crop yield for each complete crop
cycle was determined by dividing total daily harvests from each block by total plant

numbers.
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2.3.7 Greenhouse spatiotemporal distribution approach

The spatiotemporal distribution of the microclimate parameters in the greenhouse was
determined by WSN device data interpolation. Assuming that microclimate variables
are irregularly distributed in the greenhouse, we selected a linear method namely, a
bivariate interpolation method, and a smooth surface fitting for values that are given at
irregularly distributed points using akima method (Akima 1978). The linear method is
based on a two-dimensional cartesian coordinate system with the length and width of
the greenhouse layout considered as x-y plane and z (herein GDD) which represents a
smooth surface of the z values at selected points irregularly distributed in the x-y plane.
The selected points were the locations of the WSN. All the calculations were done using

a statistical package R software installed with the akima package.

2.4 Results and Discussion

24.1 Crop growth monitoring using microclimate

Crop growth monitoring based on GDD was carried out. It is claimed by Bauer et
al. that temperature and other factors such as photoperiod are important factors that
affect the transition from vegetative to floral growth. In fact, Ito and Saito (1962) also
evaluated the effects of air temperature on plant morphological development of other
crops.(5,13) Therefore, for each block in a tomato greenhouse, the corresponding GDD
was determined during the vegetative and harvest growth periods. As shown in Table
2.1, a summary of cumulative GDD (GDD) of eight selected blocks during vegetative
growth and harvest periods. It can be seen that cumulative GDD was different for both

vegetative and harvesting period of each block.
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In order to evaluate the effect of microclimate parameters to tomato crop growth, we
determined crop yield for eight selected complete crop cycles by dividing each block’s
total daily harvests by total number of plants in its block. We further determined the
cumulative crop yield by summation of the daily crop yields. We also determined the
daily means of carbon dioxide and humidity of each block using the average means of

each specific WSN device.

Table 2.1 Summary of GDD for vegetative growth for eight complete tomato growth cycles

Vegetative Growth

Block  Transplanted  Just before harvest =~ GDD
B 2017 —-08 —21 2017 —09 — 29 624.4
B 2017 - 08 —21 2017 —10—-13 849.6
C 2017 —-07—-18  2017-09—-18 1187.0
C 2017 —-12—-24 2018 — 04 — 09 875.9
D 2017-10—-26 2018 -03—-05 1046.4
D 2017 -05—-26 2017 -07—25  1030.5
E 2017 —-10—-05 2018 -02—25  1462.6
F 2017 -08-16  2017-—-10—-23 1121.0

Source: Author.

Table 2.2 Summary of crop yield and GDD for harvest periods for eight complete tomato
growth cycles.

Harvest Period

Block  Harvest Start Harvest End * GDD Duration (Days) Total Harvest(kg) Crop Yield SD
B 2017 —-09—29 2018 —03—19 1518.0 58 298.0 3.65
B 2017 —10—13 2018 —03 —19 1288.5 56 220.2 3.85
C 2017 —09 — 18 2017 —12—13 890.3 38 576.0 5.59
C 2018 — 04 — 09 2018 — 07 —23 1563.4 47 736.8 6.76
D 2018 — 03 — 05 2018 — 07 — 03 1460.2 52 1615.6 10.83
D 2017 —07—25 2017—10—16 1194.5 37 1147.5 16.06
E 2018 =02 —25 2018 —05—07 769.6 29 1214.9 12.04
F 2017 — 10 —23 2018 —02—23 13834 46 1398.3 7.08

Source: Author.

From Figure 2.8, we see that GDD are different throughout the year. GDD is seemingly
high during July and September and between November and February GDD are low.
The different microclimate conditions in the greenhouse as shown by GDD graph
could imply that tomato plant growths are affected by microclimate. Cumulative crop
yield sigmoid curves of the selected crop cycle were as well different throughout the
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year.

In order to determine the response of tomato growth to microclimate conditions and
nutrient parameters, analysis of variance of microclimate parameters and nutrient
solution was carried out. The results indicated that all parameters were significantly
different (p < 0.001) for nitrate, calcium solution and EC. Also, GDD, mean humidity
and mean carbon dioxide concentration were significantly different (p < 0.001). For
the selected complete crop cycles, a significance difference (p < 0.05) was observed
for crop yield. This could suggest that crop yields are different amongst all the blocks.
We further determined the linear relationships between microclimate, nutrient solution,

and EC and tomato crop yield as summarized in table 2.3.

Table 2.3 Summary of crop yield and GDD for harvest periods for seven complete tomato
growth cycles

model variables metric CV11 CV12 DVI11 DVI12 EVI2 FVIl FVI2
Model 4 a r? 0974 0.923 0.894 0.995 0.897 0.970 0.965
p—value skkok skkok skekosk skkosk skksk skkok skeksk
AIC 247.6 2680 3634 117.8 1709 2325 2389
Model 3 a, carbon dioxide r? 0982 0.993 0978 0996 0.931 0.973 0.996
p-value skkok skkok skeksk skksk skksk skkok skeksk
AIC 240.2 213.5 3215 117.0 167.2 2324 1953
Model 2 a r? 0974 0.923 0.894 0.995 0.897 0.970 0.965
p'Vall/le skeksk keksk skesksk skesksk skskosk sksksk kesksk
AIC 227.3 2485 301.8 84.8 140.5 192.1 201.6
Model 1 nitrate solution 2 0.520 0.008 0.872 0.584 0.267 0.869
p'Value skkook 056 skkosk skkosk skkosk skekesk
AIC 456.8 586.2 201.6 2258 584.3 346.0
Model1 EC 2 0.861 0.107 0.893 0.884 0.867 0.597
p'ValMe skskok 0028 skksk skkosk skskok skekesk
AIC 409.7 581.5 197.5 2003 505.7 382.0
Model 1 calcium solution r? 0.520 0.934 0.872 0.584 0.463 0.869
p-value skkok skkosk skkosk skksk skksk skeksk
AIC 456.8 4643 201.6 2258 570.0 346.0
Model 1  humidity, r? 0.273 0.168 0.237 0.218 0.209 0.236
p-value Hksk sk 0.018 (0.038 ek
AIC 472.6 5783 242.6 238.5 587.8 402.5

* significant at p < 0.05; ™ significant at p < 0.005; “* significant at p < 0.001.

From table 2.3, model 1,2 and 3 are linear regression models using dependent variable
as cumulative crop yield and independent variables for 4-day daily moving averages of
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humidity, carbon dioxide, nitrate solution, calcium solution and EC. Model 3 is multiple
linear regression model using GDD (denoted as a) as independent variable and 4-day
moving average of carbon dioxide. Model 4 is linear regression model using GDD as

independent variable.

Results of the analysis indicated that a strong linear relationship (r? > 0.89; Model 2,3,4)
between GDD, and carbon dioxide and cumulative crop yield for all the seven selected
crop cycles. Results of four crop cycles indicated a linear relationship between nitrate
solution, calcium, and EC and crop yield. There wasn’t any observed linear relationship
between humidity and crop yield. Results of the linear relationships between
microclimate and crop yield indicate that tomato growth is affected by microclimate.
On the basis of the hypothesis that the microclimate within the greenhouse is not
equally distributed, we determined microclimate spatiotemporal distribution using only

temperature parameters as discussed in proceeding section 2.4.2.

2.4.2 Spatiotemporal distribution

In order to understand the factors for varying tomato crop yields, it was important
to determine the spatiotemporal microclimate distribution in the greenhouse. Prior
to determining the spatiotemporal distribution of GDD, analysis of variance of WSN
device parameters was carried out. Results showed significance differences (p < 0.001)
for temperature and humidity. There were significant differences (p < 0.001) in carbon
dioxide among the WSN devices (only three WSN devices had significant difference

with p — value more than 0.05).

Results showed that there were significant spatial and temporal variations within the

greenhouse especially in the winter season. As shown in Figure 2.9, the spatiotemporal
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distributions of monthly averages of GDD in November and January are showing
distinct variations and this clearly shows how microclimate conditions within the

greenhouse could be different in winter season.

From the spatiotemporal variation graphs, it is observed that hotter area at specific
spatial locations in the greenhouse depicted the location of the heating facility (heating

facility are located in the two corners of greenhouse).

2.5 Conclusions

In this study on the development of a simplified smart agriculture system for small-scale
greenhouse farming, we draw conclusions on how important smart agriculture could
be used effectively with a deepened understanding of smart agriculture application
in small-scale horticultural farming a case of tomato production. We discussed the
application of smart agriculture system with a real-time capability and for reliable
monitoring within the greenhouse. We should note that tomato production is done in a
rotation cycle within one greenhouse. This study shows the necessity to monitor specific
block microclimate conditions in real-time. We were able to extract knowledge from
the WSN device data in order to make intelligent decisions to help in farm decision

making.

We also selected a simple algorithm such as GDD and showed how it could be used
for crop growth monitoring. The use of only temperature in a simplified algorithm is a
dimensionality reduction of many parameters collected by WSN devices. We used only
GDD data in determining the spatiotemporal variations in the greenhouse and showed
how important it was to maintain a well-balanced microclimate environment in the

greenhouse. Therefore, to ensure a well-controlled microclimate within the greenhouse,
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farmers could regulate heating and cooling facilities for optimum growing environment
during plant growth stage, leading to a reduction of energy required for greenhouse

heating and cooling.

As it was stated earlier, the challenge of shortage of agricultural labor would therefore
imply using such a simplified smart agricultural system in a labor demanding situation.
Taking into account the initial and running costs as mentioned in sections 2.2 and
2.3, the developed system is cost-effective relative to functionality in limited resource
small-scale horticultural farm. The reliability of WSN device data makes it efficient,
and consequently, it could be used for accurate crop production planning and decision
making of cultivation activities. This was achieved by using the crop calendar that was
integrated in the web DB. The crop calendar helps farmers visualize farm activities and
therefore reschedule farm activity to enhance efficient farm management. The results of
this research imply that by using a simplified smart agriculture system, the application

could be transferred to other tomato greenhouses.
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Figure. 2.8 Daily GDD within the greenhouse (Bottom). Accumulated GDD of selected crop
cycle (Middle) Cumulative crop yield of selected crop cycle (Top). GDD denote cumulative
GDD, Acc.crop yield denote cumulated daily crop yield. Crop cycle from CV11 to FV12,
where first letters (C, D, E and F) denote block name, and appended V11 and V12 denote first
crop cycle of normal tomato variety and second crop cycle of normal crop variety respectively

Source: Author.
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Figure. 2.9 Spatiotemporal monthly GDD variations in tomato greenhouse for November

2017 and January 2018. Values on vertical and horizontal represent the greenhouse
length and width in meters.
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CHAPTER 3

A STUDY OF EMERGING

TECHNOLOGY IN ICT

CONSTRAINED FARMERS

3.1 Introduction

This research was part of the aforementioned research focus, a deep learning and
machine learning approach based on images. Out earlier research work, an ICT based
approach was taken to tackle the challenge of micro-climate in horticultural tomato
farmers, and as a technological transfer to small-scale farmers of SSA, the challenge
of ICT constrained farmers was raised that become the basis of this work. Therefore,
the key research question were to understand what available information and platforms
could enhance adoption of emerging technologies in order to tackle the most dominant

and destructive tomato pest in SSA.

Owing to the success of improved technological transfer that have resulted to increased

use of mobile based technologies in agriculture. Several applications have laid upon
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such technologies. The need to use such related platforms would be a better way
to tackle prevailing tomato pest challenges. Therefore, it was adequately required to
design a method of introducing some of the artificial intelligence techniques in such a
manner. The research further focused on artificial intelligence approach to tackle tomato
pest Tuta absoluta. In direction to the artificial intelligence approach, it raised a need
to first understand information flow and adoption of a technology in ICT constrained
resource countries such as in SSA. T. absoluta has become a threat to small scale
farmers in SSA, all due to the favorable climate conditions. The impact of the tomato

pest raised and spread in most African countries as shown in Figure 3.1.

3.2 Objectives

This research was done to first understand the demography and information flow for
tomato farmers in SSA. Further, examination of tomato farmers understanding on
Tomato pests 7. absoluta damage and how damage could be controlled and later devise
a recommended platform for introduction of a artificial intelligence based approach to

tackle T. absoluta.

3.3 Study Site and Farmer Survey Data

This study was conducted in Tanzania regions of Arusha, Morogoro and Iringa between
15th August 2020 to 30th September 2020, as shown in the Figure 3.2. The study
included a questionnaire survey of small scale tomato farmers (Figure 3.3a). 332
farmers were picked at random. The study was conducted in the major tomato growing
regions. We used agriculture experts to collect the questionnaires (Detailed of the

questionnaires are in Figure B.1).
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Figure. 3.1 CLIMEX climatic suitability indices map of 7. absoluta in Africa. Predictions are
based on the eco-climatic index (EI), a measure of climatic suitability scaled from 1-100, for
locations within CLIMEX’s station database. EI = (0-5) location is not suitable; EI = (5-20)
moderate level of suitability; EI = (20-50) high risk of establishment and EI > 50 very high
likelihood of long-term survival.

Source: Tonnang et al. (2015)
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Figure. 3.2 Tanzania map showing the study sites. Green dot represents Arusha site, Red

represent Morogoro site and Blue represent Iringa site.

Source: Author.
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(b)

Figure. 3.3 Showing farmer interviewed in (a) the farm and (b) at farmers household during the
farmer survey in Morogoro region in August 2020.

Source: Author.

3.4 Description of the study area

In this study, the average age of the farmers was 47.6 years in Arusha with villages
of Ngarenanyuki (Ng/nyuki) and Ngabobo, 49.1 years in Morogoro with villages of
Doma, Kalenga and Mlali, and 44.2 years in Iringa with villages of Ilula, Mbuyuni
and Kipera. This could suggest that farmers who practise tomato farming are generally
middle-aged (Table 3.1 ). We can also see that Iringa region villages have the lowest
average age. Most respondents surveyed in three regions ( 8 villages) were male
65% of the respondant. In terms of farmers experience in tomato production, 34.3%
had experience of about 5 years, 25.3% had experience of about 10 years, 22.6%
had experience of about 20 years, 10.2% had experience of more than 20 years and
only 7.5% had experience of less that a year (new tomato farmers). In terms of land
holding, farmers in Arusha owned more land, compared to the farmers in Morogoro

and Iringa.
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Table 3.1 Summary of age,farmers experience in tomato production and farm size for respective
villages during farmer survey in August and September 2020

Age Experience Farm Size

Village Mean SD Min Max Mean SD Min Max Mean SD Min Max n

Doma 464 130 24 60 117 64 5 20 1.9 14 05 7 41
Tlula 408 166 24 75 9.3 7.0 1 20 1.2 0.8 025 5 38
Kalenga 444 143 24 75 121 102 1 40 1.0 0.7 025 4 41
kipera 536 132 30 75 16,7 145 1 40 1.0 05 05 3 39
Mbuyuni 382 11.6 24 70 6.7 56 1 20 1.2 0.8 025 3 41
Milali 473 160 24 75 137 116 1 40 1.1 1.2 05 8 47
Ng/myuki 479 132 24 70 125 103 5 40 1.5 08 05 5 42
ngabobo 473 140 24 75 213 135 5 40 2.6 1.6 1 10 40

SD; Standard Deviation, Min; Minimum, Max; Maximum, n: sample size

3.5 Results of farmer survey

3.5.1 Challenges farmers face

The most common challenge farmers faces was tomato disease (82% of total
respondants) followed by tomato pests (68.1% of total respondants) and wild animals
(11.1% of total respondants). From Figure 3.4, we can clearly see the distribution of
major challenges farmers face amongst the villages. Doma, Ng/nyuki and Ilula had the
same number of cases for both disease and pest. Other villages, disease and pest had the
most commonly challenges compared to wild animal cases. Mlali, Doma and Ng/nyuki

didn’t report any wild animal cases.

3.5.2 Information inflow

We studied the way information flows amongst farmers. The term of information
referred to how farmers get to hear about solutions to challenges they face and how they
share the information amongst others farmers. Regarding using information to tackle
farmers challenges, results of the survey showed that 19% of respondants rely on past

experience to tackle the challenges, about 50% relied on advise from agriculture experts
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Figure. 3.4 Disease Pest and wild animals Problem challenge during farmer survey in August
and September 2020.

information and about 30% of farmers rely on other farmers source of information
to tackle the challenges they face. This information flow medium included mouth to

mouth, using cellular phones and agriculture experts.

3.5.3 Description of farmer tranportation to farms

In this survey, we also studied farmers transportation between their farms and household
places. Results showed that majority of farmers travel by foot to their farms followed
by motorcycle and bicycle. A simple statistical analysis was done to compare the
transport usage amongst the villages. Results showed that no significant (p-value
0.963) difference amongst the village transport types but there was significant difference
within transport (p-value of 5.25% at 1% significant level) across villages means of

transport.
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Figure. 3.5 The usage of farmers Transport categories during farmer survey in August and
September 2020.

3.5.4 Awareness of T. absoluta early detection

Part of the survey was to understand the relationship of farmers activities that symbolize
methods towards early detection of invasive tomato pest 7. absoluta. Therefore, we
studied farmers awareness of how they define 7 absoluta damage, crop growth stage

farm visits and current measures taken to control pests.

Figure 3.6 shows the results of farmers awareness of 7. absoluta damage. Five main
parts of the plant are affected by T. absoluta. T. absoluta damage can be recognised
by dry leaves, flower abortion, leaves fold, fruit performation and last fruit rot. In
this study, we categorised the damages as early stage and, fruiting and maturity. The
response to damage awareness amongst the villages varied between dry leaves and
leave folds. This indicated that atleast the farmers could identity and recognize T.
absoluta damage at early stage of crop cycle. Another significant awareness was the

fruit perforation and rot at fruiting and maturiy stages. Fruit perforation and rot is

34



(2] ~
o o

T.Absoluta awareness (Persons)

N Early Stage l Flowering l Fruiting & Maturity I
100 I I

Doma llula Kalenga Kipera Miali N/nyuki ngabobo Ruaha
Villages

o

Figure. 3.6 Farmers awareness of T.absoluta damage at crop cycle for surveyed villages during
farmer survey in August and September 2020.

usually during harvest stage. This could be referred to as late stage damage during crop
growth cycle. It was also noted that, the farmers are less aware of 7. absoluta damage

as flower abortion.

Farm visit was studied based on the frequency intervals of farmers visiting farm during
crop growth cycle (Figure 3.7). The interval were daily basis, 4-day interval, 7-day
interval, 14-day interval, 21-day interval and 30-day interval. Results showed that,
farmers visit farms often at early planting stages and less often during vegetative growth
stage. Further, farmers tendency to visit farm reduces toward the late crop growth
cycle (flowering, fruiting),however, during harvesting, the farm visit frequency tends

to increase.

3.6 Farmer survey discussion and conclusion

Understanding farmers comprehension and awareness level of 7. absoluta damage is

critical. Farmers were aware about the dry leaves as symptoms to identify 7. absoluta
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Figure. 3.7 Farmers farm visit tendency during crop growth stages. The visits determined by
frequencies as 1;daily, 4; 4 days, 7; 7 days, 14; 14 days, 21; 21 days and 30; 30 days interval

during farmer survey in August and September 2020.

36



Crop Growth cycle Average visit

Planting 6
Vegetative growth 9
Flowering 10
Fruiting 12
Harvesting 10

damage in tomato plants, this was the basis for a need to focus on early detection
methods that could eventually aid in the faster and efficient detection of 7. absoluta
damage. In addition, farmers visits show how an accomplishment of early detection
procedure would be made effective, the fact that it was necessary for the farmers to
visit the farm in order to use the devised method that could help in early detection of 7
absoluta symptoms. Furthermore, information flow within the farmers community was
a basis to be considered in the nearby future in case an artificial intelligence based
approach is to be deployed and practically used by farmers. Therefore, a farmers

platform would be effective in technological transfer.

3.6.1 Experiment Study on 7. absoluta impact on tomato yield

In this study, an experimental study was carried to determine the impact of 7. absoluta
on tomato yield. The In-house experiments were conducted on one of the major areas
prone to T. absoluta infestation Arusha in Tanzania. Figure 3.8 (a) show the in-house
experiments used with controlled pests from outside. Commonly practiced agronomic
practice for the experiments. Plants were inoculated a range of 2 to 8 T. absoluta larvae
per plant on the second day after transplanting. At fruiting and maturing stages, we

collected all the tomato fruits from start of fruiting to end of mature growth stage.
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T. Absoluta
Larvae inoculation

Figure. 3.8 Field experiment conducted in in-house screen house showing transplanting
of tomato seedlings (a-Left) and T. absoluta larvae inoculation on the second day after
transplanting ( (a)-center image) and (a) -right is insert of 7. absoluta larvae. Damage on plant
parts (b) flower and (c) fruits.

3.7 Results and Discussion of field experiments

The results of the in-house experiment revealed that 7. absoluta effects differently in

agronomic fields as shown in Figure 3.10.

The mean yield for total harvest ( marketable fruits), total loss relative to total loss due

to T absoluta as shown in Figure 3.9, show how greatly yield is impacted.

We can also see that, marketable yield during the tomato harvest decrease drastically as
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depicted in Figure 3.12
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Figure. 3.9 Total Tomato per block that includes marketable fruits, non-marketable (affected
by T.absoluta
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Figure. 3.10 Total Tomato yield for 6 irrigation types in each block

ANOVA test was conducted, results showed Signigicant differences exist within plots

for total yield with p-value of 0.0943, for total loss yield the p-value was 0.405 and
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Table 3.2 Summary of tomato yield of tomato fruits under three agronomic irrigation types
during farmer experiment in September 2018.

Block Plot Marketable Yield Non-marketable loss Tuta Loss Total loss 7. absoluta loss
(g/m?) (g/m?) (g/m?) ratio ratio
BLOCK_1 BUND_1 56543 806.94 605.99 0.59 0.75
BLOCK_1 BUND_2 716.74 1074.62 836.4 0.6 0.78
BLOCK_1 DRIP_1 686.97 942.56 566.08 0.58 0.6
BLOCK_1 DRIP_2 58347 1022.94 674.69 0.64 0.66
BLOCK_1 FURR_1 574.19 524.9 336.1 0.48 0.64
BLOCK_1 FURR_2 282.15 710.82 457.35 0.72 0.64
BLOCK_2 BUND_1 564.42 1120.75 851.44 0.67 0.76
BLOCK_2 BUND_2 893..15 1315.67 999.79 0.6 0.76
BLOCK_2 DRIP_1 765.11 1057.21 699.06 0.58 0.66
BLOCK_2 DRIP_2 683.89 1376.11 1093.22  0.67 0.79
BLOCK_2 FURR_1 49443 1068.61 704.93 0.68 0.66
BLOCK_2 FURR_2 188.03 511.07 312.39 0.73 0.61
BLOCK_3 BUND_1 471.90 1102.51 753.96 0.7 0.68
BLOCK_3 BUND_2 532.26 1200.26 704.75 0.69 0.59
BLOCK_3 DRIP_1 421.75 1268.88 588.83 0.75 0.46
BLOCK_3 DRIP_2 547.81 1068.03 820.07 0.66 0.77
BLOCK_3 FURR_1 656.01 1272.01 867.61 0.66 0.68
BLOCK_3 FURR_2 487.44 1140.96 827.31 0.7 0.73

BLOCK_1, BLOCK_2 and BLOCK_3; represent the in-house blocks partitioned into
three respective block shown by _1,_2,and _3. BUND_1 and BUND_2; represent plots
of bund irrigation of first and second plot of in a block. DRIP_1 and DRIP_2; represent
plots of drip irrigation of first and second plot of in a block. FURR_1 and FURR_2;
represent plots of furrow irrigation of first and second plot of in a block.

Source: Author.

40



Table 3.3 Summary of Tukey multiple comparisons of means for tomato yield, loss and T.
absoluta loss of tomato fruits under three agronomic irrigation types during farmer experiment
in September 2018.

Total yield Total loss yield 7. absoluta loss

Plots p-adj p adj p adj
BUND_2 -BUND_1 0.693 0.931 0.980
DRIP_1-BUND_1  0.981 0.998 0.972
DRIP_2 - BUND_1  0.948 0.975 0.966
FURR_1-BUND_1 1.000 1.000 0.986
FURR_2 -BUND_1 0.533 0.869 0.792
DRIP_1 - BUND_2  0.965 0.993 0.712
DRIP_2 - BUND_2  0.989 1.000 1.000
FURR_1-BUND_2 0.661 0.827 0.773
FURR_2 - BUND_2 0.065 0.377 0.416
DRIP_2 - DRIP_1 1.000 0.999 0.657
FURR_1 - DRIP_1 0.974 0.982 1.000
FURR_2 - DRIP_1 0.224 0.668 0.994
FURR_1-DRIP_2 0934 0.910 0.721
FURR_2-DRIP_2  0.170 0.482 0.368
FURR_2 - FURR_1  0.565 0.955 0.985

BUND_1 and BUND_2; represent plots of bund irrigation of first and second plot of in
a block. DRIP_1 and DRIP_2; represent plots of drip irrigation of first and second plot
of in a block. FURR_1 and FURR_2; represent plots of furrow irrigation of first and
second plot of in a block.

Source: Author.
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loss due to T. absoluta the p-value was 0.303. Further a Tukey multiple comparisons
of means between the plots showed significant differences within the plots as shown in
Table 3.3.
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Figure. 3.11 Showing Marketable and Non-marketable (affected by 7. absoluta ) yield of 2018
harvest season period

— Tuta Damage
Marketable
900 — Total loss

T

= 600-
ie}
o
>
o
©
£
(o]
l_

300+

0_

Nov 19 Nov 26 Dec 03 Dec 10

Havest season 2018

Figure. 3.12 T. absoluta impact on crop yeild depicted as decreasing linear yield during farm
experiment in between Algust and September 2020.
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3.8 Conclusions of field experiments

The in-house experiments carried out showed that 7. absoluta has great loss tomato
yield. With the different agronomic practices carried out as irrigation types, it also
showed that, the agronomic practices might hinder 7. absoluta damage. Therefore,
there was a need to further investigate on how different agronomic factors could
impact T. absoluta damage. Also a need to monitor irrigation practices and provide

recommendation for efficient use of water to control 7. absoluta.

In this research, it was necessary to determine and understand the impacts of T.
absoluta to yield such that proper machine learning solutions could be implementated.
Therefore, a basis of applied machine learning techniques were devised as discussed in

the next Chapters.
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CHAPTER 4

IMAGE RECOGNITION OF
TOMATO PEST USING DEEP

LEARNING TECHNIQUES

4.1 Introduction

Tomato Lycopersicon esculentum is a nutrition-rich and an edible plant that is widely
grown throughout the world (Schreinemachers et al. 2018). Globally, approximately
160 million tons of tomato are produced each year. In 2016, more than 247,135 t of
tomatoes were harvested in Tanzania within an area of 54,520 ha. This production is
equivalent to 64% of all fruits and vegetables in the country (Ministry of Agriculture
2016/17). Tomato is considered to be a cash crop to small-scale farmers, and, therefore,
the plant contributes largely to poverty reduction. Given the economic importance
of tomato, we should consider the factors affecting its production and find more

appropriate technological solutions to maximize its productivity.

The production of tomato is threatened by an invasive pest called tomato leafminer (7.
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absoluta), which tends to attack the plant and weaken its growth and yield capacity.
Tomato leafminer was originated from South America and later spread to the rest of the
world. The mature female can lay between 250 and 300 eggs at once, and has a life
cycle with four development stages: egg, larva, pupa, and adult. It has reproductive rate
of around 12 generations per year (Guimapi et al. 2016). The second stage (larva) is
the most dangerous one because the pest at this stage can mine, develop, and feed on
leaves, stems, and fruits of the tomato plant (Guimapi et al. 2016). Therefore, if the
larva is left uncontrolled at the early stages of its growth, it may consume all plants
in the farm (Zekeya et al . 2017). Management of tomato leafminer has continued to
be a great constraint in the industry of tomato production, hence calling for scholars
to devise approaches of identifying and combating it before causing great losses to
farmers. Recent statistics show that farmers of tomato, the main host for the pest,
have continued to incur heavy yield loss, ranging from 80%-100%, due to the invasion

(Zekeya et al . 2017).

Of the available approaches to address the issue, deep learning has demonstrated
successful results (LeCun et al. 2015, 1995). Various deep learning techniques have
been applied to identify, classify, and quantify diseases, pests, and stress on different
crops. Among these techniques, Convolutional Neural Network (CNN) techniques
provides sophisticated ways of image analysis, and thus facilitates diagnosis of plant
diseases. It is required to apply these advanced techniques to develop more effective

approaches for identifying early invasion of 7. absoluta in tomato.

Invasion of T. absoluta has for years, been causing great production and economic
loses in the world. And, to date, no suitable solution is available to control its

spread. Despite existence of various ways of controlling the pest (using chemical
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pesticides and pheromone traps, and cultivation of resistant tomato varieties), early
identification of the pest remains an open-ended research question (Zekeya et al. 2017).
In Tanzania, for instance, the agricultural system depends on extension officers as
key facilitators in providing farmers with appropriate knowledge on pest and disease
management. However, the extension service system is currently conducted locally by
limited extension officers' visits to provide training and workshop to meet demands of
all farmers in the given area (Maginga et al. 2018). This challenge calls for a need
to integrate sophisticated technologies, including those based on deep learning, into

agriculture to identify pest and to maximize productivity (Zahedi et al. 2012).

This research introduces transfer learning, a deep learning approach, for identifying
the invasion of 7. absoluta at early stages. The approach reinforces classification of leaf
images collected from a field setup in a controlled environment (controlled environment
refers to preventing the spread of T. absoluta to other neighboring tomato fields using
net house). Transfer learning was selected because of its ability of improving the
performance of a neural network by speeding up the time taken to train models through
reuse of models that were trained on similar tasks. Transfer learning allows the use of
few data in training a neural network as compared to training from scratch that requires

large amount of data.

4.2 Review of previous works

4.2.1 Computer vision in agriculture crops

Various studies have revealed that image-based plant diagnosis methods generate more

accurate results compared with human visual diagnosis.
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Ramcharan et al. used a pretrained InceptionV3 to detect incidence of three cassava
diseases and two pests on the image dataset with 11,670 images collected from a
field in Tanzania (Ramcharan et al. 2017). The model could correctly identify the
diseases and pest damages with various accuracies: 98%, brown leaf spot; 96%, red
mite damage; 95%, green mite damage; 98%, cassava brown streak disease; and, 96%,
cassava mosaic disease. The study recommended transfer learning as a powerful deep

learning technique for developing highly performing classifiers.

Maize, the source of starch crop grown worldwide, is also affected by diseases and
pests that have devastating effects on its productivity — a consequence that threatens
food security. DeChant et al. (2017) used convolutional neural network to detect a
disease called Northern leaf blight (NLB) in maize. The study involved inoculation of
maize leaves with fungal, a causal agent of NLB, for acquiring dataset from the infected
plant. The analysis was carried out on 1,796 images composed of health and infested

images, and the authors' model yielded an accuracy of 96.7% on the dataset.

The authors in Ouppaphan (2017) used a pretrained deep learning model to identify
three corn leaf diseases. They used PlantVillage dataset containing 8,506 healthy and
unhealthy corn leaf images; the unhealthy ones had the following diseases: common
rust, northern blight, and gray spot. The results obtained after training the model
were 98.95%, 98.25%, and 98.79% for the ResNet50, Inception V3, and MobileNet,
respectively. The study revealed that the pretrained deep learning models perform well

and can be widely adopted in other agricultural crops.

Another work by Liu et al. (2017) proposed a deep learning model to classify four

diseases from apple leaves dataset containing 1,053 images of diseased and healthy
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leaves. The author used AlexNet architecture (Krizhevsky et al. 2012) to classify apple
mosaic, rust, brown spot, and Alternaria leaf spot. The approach attained an overall

accuracy of 97.62%.

Furthermore, Lu et al. successfully identified 10 rice diseases from a dataset of 500
images containing health, and infected leaves of rice and stems Lu et al. (2017). The
study used CNN to more accurately classify the images into their respective classes.
The authors concluded that CNN yields better results compared with the traditional

machine learning techniques of identifying diseases on rice.

4.2.2 Computer vision in tomato disease identification

Several studies have proposed deep learning as an effective approach of diagnosing
various tomato stress. Consequently, we have witnessed great revolution in agriculture,
including substantial increase in crop production. The study by Zhang et al., for
instance, used CNN architectures, pretrained on 5,550 images (from an open access
repository), to identify eight tomato diseases: early blight, yellow leaf curl, corynespora
leaf spot, leaf mold, virus, late blight, septoria leaf spot, and two-spotted spider mite
Zhang et al. (2018). All the authors' models could clearly and correctly classify the
diseases at the following performances: 95.83%, AlexNet; 95.66%, GoogleNet; and,

96.51%, ResNet50.

Brahimi et al. compared the performances of shallow models (Simple Vector Machine
and Random Forest) against pretrained deep models (AlexNet and GoogleNet) in the
identification of nine tomato diseases Brahimi et al. (2017). The pretrained deep models
outperformed the shallow models by identifying the diseases with high accuracies of

98.66% and 98.53% for AlexNet and GoogleNet, respectively; Simple Vector Machine
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and Random Forest generated accuracies of 94.53% and 95.46%, respectively, much

lower than those depicted deep models.

Rangarajan et al. (2018) used two pretrained deep learning models, VGG16 (Simonyan
and Zisserman 2014) and AlexNet to classify six tomato diseases. They used images
from PlantVillage dataset containing healthy leaves and unhealthy ones with six tomato
diseases: late blight, leaf mold, two-spotted spider might, target spot, mosaic virus,
and yellow leaf curl virus. The models attained classification accuracies of 99.24% and

96.51% for VGG16 and AlexNet, respectively.

Ferentinos used deep learning, specifically the VGG model, to recognize eight tomato
plant diseases and two tomato pests from a dataset of 87,848 tomato leaves images
Ferentinos (2018). The model exhibited a great performance of 99.53% in plant disease
detection. This high-level performance suggests that Convolutional Neural Networks
are suitable for the automatic detection of plant pest and diseases through the analysis

of leaf images.

Several research have used deep learning techniques and have applied them for plant
disease detection. These techniques have exhibited good performance; however, no
technique has been developed to detect tomato leaf miner invasion. In addition, there
has been no publicly available dataset with images of tomatoes infected by 7. absoluta.
This lack of dataset hinders progress of research on early detection of T. absoluta
in tomatoes. Therefore, using images we captured from the field, the current study
presents a deep learning approach for 7. absoluta identification at early stages of the
tomato plant growth. Our dataset was deposited in a public repository and can be

accessible at Denis et al. (2020). This dataset also help to facilitate further research
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in T. absoluta identification from diseased tomato plants.

4.3 Materials and Methods

4.3.1 The dataset

Four in-house data collection experiments (Figure 4.1) were conducted in two of the
major areas prone to 7. absoluta infestation, Arusha region located at 3°22'31” S,
36°52'25” E, in Northern part of Tanzania, which is a sub tropical area that experience
an annual average temperature of 25°C and Morogoro located at 6°53'28" S, 37°37'45”
E, in Easter part of Tanzania (Details of the layout are in Appendix C). Table 4.1
summarizes experiments for the period between August 2018 and April 2020. Figure
4.1 show the in-house experiments used with controlled pests from outside. We
followed commonly practiced agronomic practice for the experiments. The table also
shows factors that were put into consideration to have a vast diverse dataset of the real
field situations i.e regions of the country that are highly infestated with 7. absoluta, crop
cycle season, mainly grown tomato varieties and mainly practiced farming systems. We
planted healthy tomato seedlings (free from other diseases and pests) and inoculated
some plants on a range of 2 to 8 T. absoluta larvae per plant on the second day after
transplanting and on a daily basis took pictures of every plant between 08:00 and 10:00
A.M consecutively for two weeks. A total of 11236 Images (more images are shown
in Figure B.2 of tomato plants were collected using Canon EOS Kiss X7 camera with
a resolution of 5184 x 3456 pixels (details shown in Appendix C.2)and low resolution
mobile camera (details shown in Appendix C.3). We focused on capturing the upper
part of the plant at nadir, approximately 40 cm away from the plant, specifically the

plant crown (plant canopy because this part is always affected at early growth stages of
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the plant.

(e) ®

Figure. 4.1 In-house experiment set up screen houses. Arusha site (12M x 12M x 4.5M 0.1cm
net size) (a) outside view (b) inside view, Morogoro site (15M x 12M x 5m, 0.1cm net size)(c)
outside view (d) inside view, Morogoro farmers screen house (e) and (f)

4.3.2 Definition of early stage

Tomato crop cycle typically consists of early growth stage of about 21 days since
sowing, followed by vegetative growth stage in the range of 20 days to 25 days, followed
by flowering stage of about 20 days to 30 days and lastly fruiting and maturing of about

15 days to 28 days as described by Jones (2013).

In this research, we define early growth stages (herein, early stage) of the tomato crop
cycle as the growth cycle between day of transplanting and the next 15 days after
transplanting (Figure 4.2). The early stage is when T. absoluta is mostly realized

and detected in plants. Normally during nursery stage, the seedlings are grown
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Table 4.1 Data collection set-up and factors considered for each experiment

Duration Season Region Variety Farming system Images
Aug - Nov 2018 dry north 1 drip, furrow, bund 2248
Jan - May 2018  dry north 3 drip 2012
Oct - Dec 2019  dry/wet north 3 drip 4060
Jan - Apr 2020  wet east 2 drip, furrow, bund 2916

under controlled conditions free from 7. absoluta attack in small green houses. After

transplanting, is when the plants are first subjected to 7. absoluta attack.

|Image capture period |
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Early stage

|(2 - 15 days) since
|T. Absoluta larvae
|inoculation
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. Earlygrowth | ~ Vegetative 7[
21 days | 20 - 25 days |
Early stage |
r ’ l 2 - 15 days |

T. Absoluta |
Larvae inoculationlm |

Flowering
20 - 30 days

Crop growth stages

€ > research Early stages

fruiting & Mature
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Figure. 4.2 Tomato crop cycle. Green dashed box show the early stage for this research

Source: Jones (2013).

4.3.3 The dataset for classification

The dataset used for classification task consisted of two classes, images of healthy
plants (non-affected with 7. absoluta and images of plants affected with 7. absoluta .
Non-affected with T. absoluta images were more than images affected with 7. absoluta

, therefore, to reduce the bias due to imbalance data, 10% of the images were held as
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test set, and the remaining 90% were sub-divided into training and validation sets in
the ratio of 85:15. Also, non-affected T. absoluta images were divided into 4 clusters
of images while retaining 10% for testing. Therefore making four datasets each with
a total of 1623 for training, we used 230 images for validation and 218 images for

testing.

4.3.4 The dataset for quantification

T. absoluta can cause progressive damage in short time, it is important to identify and
quantify the damage status at early stage of tomato growth. Therefore, the main target of
quantification task was to be able to identify and quantify 7. absoluta damaged tomato
plant severity status that could help to make clear distinction between the predefined
three classes. The dataset used for quantification task, consisted of three classes. Using
the T. absoluta infested plant, images were separated into two categories of 7. absoluta
damage severity status examined by agricultural expert as low Tuta (we define low Tuta
as plants that were inoculated with less than 3 7. absoluta larvae) and High Tuta (we
define high Tuta as plants that were inoculated with more than 3 7. absoluta larvae). A
total of 692 images of low Tuta, 692 of high Tuta images and 2768 images of No Tuta
from the whole dataset was used, finally making three classes. We refer to the three
classes as; No Tuta ( implying the plants that were not infested with 7. absoluta), low
Tuta and high Tuta as shown in Figure 4.4 and elaborated further in tomato crop growth

cycle of figure 4.3.

4.3.5 Image pre-processing

Image pre-processing refers to the manipulation of raw image data before being

processed by the deep learning algorithm, the purpose being to enhance data quality.
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Figure. 4.3 Tomato crop cycle of T. absoluta damage status within the early stage period. (b)
Insert of elaborated 7. absoluta mine damage progress.

Source: Jones (2013).

Healthy (No Tuta)

Low Tuta

High Tuta

Figure. 4.4 Damage status of T. absoluta as healthy (No T. absoluta), and two classes of
affected plants defined as "Low Tuta" and "High Tuta".

Source: Author.

Building a well-performing model requires careful consideration of the network
architecture as well as the input data format. We pre-processed our dataset to allow
the proposed model to undertake intelligent diagnosis of extracting appropriate features

from the images (Jeong et al. 2018).
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(@)

Figure. 4.5 T. absoluta mine infection progress. (a) is the health leaf before inoculation and
red boxes are (b); 2™, (b); 4, (b); 6, and (e); 8™ days after inoculation with the
T. absoluta.

Source: Author.

The pre-processing involved three stages: Manually labelling the images. We resized
the images with the goal to generate 224 x 224 images required by VGG16 , VGG19,
(Simonyan and Zisserman 2014) and ResNet50 (He et al. 2016) and 299 x 299 for
InceptionV3 (Szegedy et al. 2016). The standard resize function in Keras (Ketkar 2017)
can, by default, resample an input image to a target size. We resized all images to
uniform sizes of 256 x 256 for the resize function to resample such resized images
according to the proposed architecture requirements. The last pre-processing we did
was image augmentation. Augmentation ensures the availability of a large amount
of training data to clearly learn features contained in the training data and to attain
high classification accuracy on the unseen data. Because of insufficient data in our
research, a challenge that could promote overfitting and generalization (on test data)
issues, we performed several random augmentations, including rescaling, shearing,
flipping, zooming, rotation, and channel shifting. This approach increased the size
of our dataset and enabled our classifier to learn more features while achieving the

outstanding performance (Perez and Wang 2017).
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4.3.6 The proposed CNN classification model

Deep learning consists of multiple processing layers that allow representation learning
of multiple level data abstraction. The strength of deep learning emanates from its
capacity to create and extrapolate new features from raw representations of input
data without being instructed explicitly on which features to use and on how such
features can be extracted (LeCun et al. 2015, Lee et al. 2017). This technique has
been applied in various fields, including computer vision, natural language processing,
speech recognition, and bioinformatics. More specifically, in computer vision, deep
learning have demonstrated high accuracy in image classification and object detection.
This category of deep learning uses CNN that takes in an input image, processes it,
and classifies it under certain categories. CNN models can be built from scratch or
from transfer learning. Using transfer learning is advantageous the fact that using
pretrained models through transfer learning wouldn’t require a lot of well-labelled data,
compared to building a model from scratch that would require well-labelled data and

many computational resources.

In this work, we have proposed a transfer learning approach based on CNN models
pretrained on ImageNet dataset as shown in Figure 4.6 framework. This approach was
preferred because of insufficient number of images available as inputs to our work.
Transfer learning can be the best approach for building powerful classifiers, especially
under conditions of limited data, through fine-tuning the parameters of network trained
on a larger dataset (Ghazi et al. 2017). Consequently, we have explored three CNN
architectures, namely VGGNet (VGG16 and VGG19) Simonyan and Zisserman (2014)

and ResNet50 He et al. (2016), and have evaluated their performances on our dataset
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Figure. 4.6 The proposed deep CNN framework pretrained using ImageNet dataset.

Source: Author.

to classify images into correct categories of plants affected and non-affected with T.

absoluta as elaborated in Figure 4.7.

VGGNet is the widely used architecture for ImageNet, and composes of VGG16 (Figure
4.8 and VGG19 (figure 4.9 )with 16 and 19 weight layers, respectively. The architecture
takes 224 x 224 input images and generates multiple outputs with probabilities
corresponding to each class. VGG16 contains thirteen convolution layers, three fully
connected layers, and five pooling layers. Furthermore, VGG19 contains sixteen
convolution layers, three fully connected layers, and five pooling layers. Convolutional
layers are used for extracting features from an image; each layer contains a 3x3 filter
with a one-pixel stride and a ReLLU activation function. The output layer contains a

sigmoid activation function, which is used for classification.

ResNet50 is a convolutional neural network trained on more than a million images
from the ImageNet database. This network takes a 224 x 224 image and produces an
output with a probability of a specific class. ResNet50 contains 50 layers deep, and

can classify images into 1000 object categories, including keyboard, mouse, pencil, and
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Figure. 4.7 Proposed binary classification for plants affected and non-affected 7. absoluta
using pretrained Deep CNN.

Source: Author.

224

256 236 256

1281280 conv3

conv2

6168

convl

Figure. 4.8 VGG16 Architecture.

512 512 512 N

convh

512

512

conv4

512 %

s

fc6

Source: Simonyan and Zisserman (2014).

TR

Figure. 4.9 VGG19 Architecture

Source: Simonyan and Zisserman (2014).
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animals. In 2015, ResNet emerged as the first winner of the ImageNet Large Scale

Visual Recognition Challenge (ILSVRC) classification task.

We expect that CNN can learn feature contained in our training data automatically and
use them to classify unseen data. Hence we will no longer rely on experts in identifying
the features associated with 7. absoluta infection. The approach would improve the
method of 7. absoluta identification as farmers will be able to detect the invasion earlier

and take appropriate measures to rescue the farms and hence improve production.

4.3.7 General CNN training algorithm

The basic architecture in the CNN begins with several convolutional layers and pooling
layers, followed by fully connected layers. For an input x of the ¢th convolutional layer,
it computes

z;e = ReLU (W; *x ), 4.1)

where * represents the convolution operation and W; represents the convolution kernels

7

of the layer. W, = W}, W2 ... WK } , and K is the number of convolution kernels of
the layer. Each kernel WX is an M x M x N weight matrix with M being the window
size and N being the number of input channels (Agarap 2018, Dahl et al. 2013, Agarap

2018, Arora et al. 2016).

ReLU represents the rectified linear function ReLU(z) = max(0, ), ReLU function
returns 0 if it receives any negative input, but for any positive value x it returns that value
back. We used ReLLU as the activation function in our models, as deep CNN with ReLUs

train several times faster than their equivalents with saturating non-linearities.

Fully connected layers are added on top of the final convolutional layer. Each fully
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connected layer computes ReLU (W;. X) , where X is the input and W/, is the weight

matrix for the fully connected layer.

The loss function measures the discrepancy between the predicted result and the label

of the input, which is defined as the sum of cross entropy (Aurelio et al. 2019):

E(W) = —% Z Z [yixlog P (z; = k) + (1 —yu)log(1—P(z; =k))] (4.2)

;=1 k=1

where W indicates the weight matrixes of convolutional and fully connected layers,
n indicates the number of training samples, ¢ is the index of training samples, and
k is the index of classes. y;, = 1 if the ¢ th sample belongs to the & th class; else
yi. = 0.P (x; = k) is the probability of input x; belonging to the k& th class that the
model predicts, which is a function of parameters 1. So the loss function takes IV as
its parameters. Network training aims to find the value of 1/ that minimizes the loss
function £. We use gradient descent algorithm (Mandic 2004, Ruder 2016) where W
is iteratively updated as,

OE(W)
ow

Wk = Wk,1 — (43)
where « is the learning rate, which is a very important parameter that determines the
step size of the learning. We use early stopping as the training stop strategy to stop
training when the network begins to overfit the data. The performance of the network
is evaluated at the end of each epoch using the test set. If the loss value of the test set

stops improving, the network will stop training.

To prevent overfitting, the transfer learning is conducted as follows: fully connected

layers are replaced with a new one and only fine-tune the top convolutional block for
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VGG16 and VGG19 and the top residual block for ResNet50, along with the new fully
connected layers. To avoid triggering large gradient updates to destroy the pretrained
weights, the new fully connected network should be initialized with proper values rather
than with random values. So firstly we freeze all layers except the new fully connected
network. The new fully connected network is trained on the output features of the final
convolutional layer. The weights learned from training are initial values for fine-tuning.
After that, the top convolutional block for VGG16 and VGG19 and the top residual
block for ResNet50 are unfreezed and then trained along with the new fully connected

network with a small learning rate (Wang et al. 2017, Shao et al. 2018).

The parameters that reached optimal performance for training shallow networks and
finetuning pretrained models are presented in table 4.2. Besides, a learning rate
schedule is employed. The initial learning rate is dropped by a factor of 0.1 every 48
epochs during training the deep networks. Because the network goes deeper, it needs
more training steps to converge. Training the classifiers was done for 1000 epochs
with a batch size of thirty two and a Stochastic Gradient Descent (SGD) optimizer of a

learning rate of 1 x 107° (Bottou 2012, 2010).

We used three pretrained architectures (VGG16, VGG19, and ResNet50) as classifiers
that were fine-tuned through transfer learning. The fully connected layer for each
pretrained architecture was replaced by the new layer, and then we fine—tuned the
convolutional blocks for the VGGnet and fine—tuned the top residual block for
ResNet50. Firstly, we freezed all layers, except the new added fully connected
layer, such that this layer could be trained on the output of the final convolutional
layer, generating the learned weights that could be used as the initial values in fine

tuning. Thereafter, the top convolutional layers for VGG16 and VGG19, and the top
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residual block for ResNet50, were unfreezed and trained with the new fully connected

layer.

4.3.8 CNN Visual Explanation

To better understand our pretrained model on the selected architectures, we used
a visual explanations technique called Gradient-weighted Class Activation Mapping
(Grad-CAM) (Selvaraju et al. 2019). Grad-CAM are more transparent and explainable.
Grad-CAM uses the gradients of any target concept such as tomato image for our
classification task. This follows the final convolutional layer to produce a coarse
localization map highlighting the important regions in the image for predicting the
concept. We chose to use Grad-CAM claimed since the authors of Grad-CAM claim
that it is applicable to a wide variety of CNN model-families, such as CNNs with
fully-connected layers. In this study, visual explanation was applied on only VGG and
VGG19. The advantage being that no architectural changes or re-training is required

for our model as explained in Figure 4.10a for classification task.

4.3.9 Implementation

The experiments were performed on Ubuntu workstation, pre-installed with Ubuntu
18.04 equipped with one Intel Core 19-9900K 3.6 GHz CPU (64 Gb RAM) accelerated
by one GeForce RTX 2080T1 Graphical Processing Unit (GPU) (12 GB memory). We
trained 1000 epoch for each model and it took an average of 41 minute on a complete
model training powered by Keras deep learning library using Tensorflow (Abadi 2016)
as backend. In total, about 13 hours were required to run training on the 16 runs of the

models i.e 4 runs for each of the 4 CNN architecture.
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Figure. 4.10 Showing (a) Proposed binary classification for plants affected and non-affected
T. absoluta using pretrained Deep CNN with a Grad-CAM used to visualize the model
performance and (b) Shows the original images in the upper rows and the visualized image
using Grad-CAM.
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Figure. 4.11 (a) Proposed Quantification model for plants Low Tuta, High Tuta and
non-affected 7. absoluta using pretrained Deep CNN with a Grad-CAM used to visualize the

model performance.(b) Shows the original images in the upper rows and the visualized image
using Grad-CAM.
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Table 4.2 The hyper-parameters used during training

Parameter Value
Epochs 1000
Batch size 32
Optimizer SGD
Learning rate  le-5
Dropout 0.5
Momentum 0.9

Early stopping 50 epochs

4.4 Results and discussions

4.4.1 Classification model

All the CNN architectures were trained on the dataset by using the hyper-parameters as
shown in Table 4.2. Such architectures were compared based on their performances on
the test dataset, and based on various metrics, such as accuracy, precision, recall, and
F1-score. Performance evaluation was done by averaging the metrics over four runs for

each dataset division

Table 4.3 reports Fl-score, mean precision, mean recall, and overall accuracy of the
classifiers trained on each dataset, as calculated by using equations (4.4) through to

equation (4.7):

TP+ TN
A = 4.4
Y = TP Y TN+ FP+ FN' “4
TP
Precision = ————— 45
recision = 5, 4.5)
TP
Recall = — 4
eca TP N 4.6)
Precision x Recall
Fl-score — 2 x recision x Reca @)

Precision + Recall,

where TP = "True Positive", number of images with 7. absoluta and classified as having
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T absoluta; TN ="True negative", number of images with no 7. absoluta and classified
as not having T. absoluta; FP = "False Positive", number of images with no 7. absoluta
and classified as having 7. absoluta; and, FN = "False Negative", number of images

with 7. absoluta and classified as not having 7. absoluta.

The overall accuracy was considered as the evaluation metric for our experiments. The

best performance accuracy was 91.9% attained using VGG16 on 85:15 dataset.

Table 4.3 Classifier performance evaluation metrics on three dataset showing the overall
accuracy. Words in curly brackets are the mean precision, mean recall and mean Fl—score

Dataset VGG16 ResNet50 VGG19

75:25  0.901(0.909,0901,0901; 0.852; 03856, 0853 08535 0.839{03852 0.841,03841}
80:20  0.906¢0.915,0915,0905; 0.854(03867,0856,0856) 0.831{0.3853, 0.841,0.836)
85:15  0.919(0922,0919,0019) 0.868; 0871, 0868 0868} 0.831(0.3851,0833, 0833

Figure 4.12 and Figure 4.13 show the learning curves of the average accuracy and the
average loss across the six clusters versus the number of epochs during training process,
respectively. As seen in Figure 4.12, it shows that the validation accuracy rises fast at
the early training stages and rises slowly at the later stages. In Figure 4.13, the losses
fell rapidly at the early stages and slowly afterwards. This observation implies that our

model learns well the features contained in our dataset at initial and later stages.

To evaluate the ability of our classifier to generalize the unseen images, we performed
the prediction on 66 images that were unused during the training process. The confusion
matrix in Figure 4.19 shows how well the classifier could classify the images into

correct categories.

4.4.2 Training quantification classifier

We used four ImageNet (Deng et al. 2009) pretrained architectures VGG16, VGG19,
ResNet50 and InceptionV3 as classifiers. The fully connected layer for each pretrained
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Figure. 4.12 Training and validation accuracy learning curves for the CNN model used in
binary classification for plants affected and non-affected with 7. absoluta.
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Figure. 4.13 Training and validation loss learning curves for the CNN model used in binary
classification for plants affected and non-affected with 7. absoluta.
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Figure. 4.14 The confusion matrix for the binary classification for plants affected and
non-affected with 7. absoluta.

architecture was replaced by the new layer (3-class classifier for our dataset). We trained
our classifiers using 50 epochs with a batch size of 16 and using Keras (Ketkar 2017)
implementation of Adam (Zou and Shen 2018), a first-order gradient-based method
for stochastic optimization. The initial learning-rate (Ir) was set to Ir=1x10", and was
halved every time the validation loss did not decrease after 32 epochs in batches of 16
images, and aborted if the validation loss did not decrease after 32 epochs. The model
with the smallest running validation loss was continuously saved, in order to re-start the
training after an abortion. In such cases, training was repeated with the initial learning
rate Ir=0.5x10"*. With the four subset dataset, we run all the four models on each of the

subsets.
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4.4.3 Quantification model

We used evaluation metrics Fl-score, precision and recall accuracy and the overall
evaluation metrics was a result of averaging over the 4 runs on each dataset of each
CNN architecture as summarized in table 4.4

The main goal was severity status of 7. absoluta determination. In term determining the
severity status images, all models precision accuracy was highest in identifying High
Tuta images i.e 90.5%, 90.5%, 90.3% and 91.5%. VGG16 and Inception-V3 had the
highest recall accuracy i.e 96.5% on No Tuta images. Also all models had F1-score
highest for High Tuta images. All the four models had the lowest evaluation metrics
accuracy in determining Low Tuta images. Among the trained models, Inception-V3

model had the highest accuracy of 87.2% on the test set.

Table 4.4 Four pretrained model evaluation metrics accuracy precision (PRC), recall (RCL),
Fl-score (F1-S) accuracy and Overall average accuracy and loss on testing datasset.

VGGl16 VGG19 ResNet50 Inception-V3
Severity PRC RCL FI-S PRC RCL FI-S PRC RCL FI-S PRC RCL FI-S
No Tuta 0.877 0.965 0.918 0.883 0.918 0918 0.878 0.900 0.890 0.895 0.933 0915
Low Tuta 0.760 0.355 0.448 0.708 0.538 0.595 0.500 0.445 0.470 0.660 0.518 0.575
High Tuta 0.905 0.940 0.920 0.905 0.948 0.920 0.903 0.910 0.905 0915 0.930 0.923
Average Accuracy 0.871 0.783 0.837 0.872
Loss 0.152 0.258 0.334 0.205

4.5 Conclusion and Future Work

This research proposes pretrained deep learning models for determining severity status
of T. absoluta tomato damages plants. For the accomplishment of this work, we used
images containing health and 7. absoluta infested tomato plant images collected from
in-house experiments. Among the pretrained models, we showed that Inception-V3
model performed best, achieving an averaged accuracy of 87.2% on the test set

compared to other models.
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Figure. 4.15 Summary of F1-Score values of CNN quantification models for plants affected
with T. absoluta as "No Tuta" and non-affected with 7. absoluta as "Low Tuta"
and "High Tuta".

Source: Author.
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Figure. 4.16 Summary of Recall values of CNN quantification models for plants affected with
T. absoluta as "No Tuta" and non-affected with T. absoluta as "Low Tuta" and
"High Tuta".

Source: Author.

71



ResNet50 [l vGG16 [ vGG19

90.5
85.3 85.6 86.8

_75
[0
g
C
S
[0
a
=50
g
3
3
<
©
] 25
o

0

75 25 80 20 85 15

Dataset Distribution

Figure. 4.17 Summary of Overall accuracy quantification values of CNN quantification
models for plants affected with 7. absoluta as "No Tuta" and non-affected with 7.
absoluta as "Low Tuta" and "High Tuta".

Source: Author.
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Figure. 4.18 Summary of accuracy and loss values of CNN quantification models for plants
affected with T. absoluta as "No Tuta" and non-affected with T. absoluta as "Low
Tuta" and "High Tuta".

Source: Author.
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Figure. 4.19 The confusion matrix for the quantification models for plants affected and
non-affected with 7. absoluta as "No_Tuta" and non-affected with 7. absoluta as
"Low_Tuta" and "High_Tuta".

Source: Author.

Among, the three severity status, all models could more easily identify High tuta images
than other severity status based on the evaluation metrics. The comparison of the
evaluation metrics on each of the severity status reveals that it is a bit harder to detect
Low Tuta than High Tuta and No Tuta images. With the goal of early identification
of T. absoluta severity status in tomato plants, we clearly show the success of using
deploying CNN models in such tasks. High Tuta severity status being determined as
early as the first two weeks of plant growth cycle is important to reduce severe loss that

are accounted when no preventive and management practices are not available.

In this research, we have proposed a deep learning model for identifying 7. absoluta
pest in tomato plants. We have used transfer learning through VGG16, VGG19, and
ResNet50 models, pretrained on the ImageNet, to train classifiers on our dataset. The
training of the models was performed using a dataset with 2145 images with healthy
and infected leaf images collected from an in-house experiment. The highly performing

model was VGG16, which achieved an overall accuracy of 91.9% in the classification
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of the previously unseen 66 images from the test set. The results suggest that transfer
learning is a powerful method that can achieve high accuracy in the identification of 7.
absoluta pest from tomato plant leaf images. Our method performs automatic feature
extraction, thereby serving experts from the labor-intensive task of feature extraction

that usually generates erroneous results.

In future, scholars may collect more dataset to increase the performance of our model
to classify the unseen images. Consequently, the model will be enhanced with the
capability of quantifying the severity of 7. absoluta invasion in the farm. Therefore,
we may have a decision support system to enable farmers take appropriate measures of

rescuing the farm after detecting invasion at an early stage of tomato plant growth.

In future work, we intend to experiment on other CNN based models for task such
as instance segmentation for localization of 7. absoluta images. Infact, ongoing work
includes, annotation of images at infested plant based and localised T. absoluta patches

on the plant leaves for instance segmentation tasks.

Quantification task main focus was to develop early detection and quantification CNN
models for tomato infested by 7. absoluta damage characteristics and quantification to
enhance early detection, the work proposes approaches in determining severity status
of T. absoluta’s effects on tomato plants.7. absoluta at early stages of tomato plant’s
growth. The study will help farmers and extension officers to make intelligently
informed decisions that could improve tomato productivity and rescue farmers from

the losses they incur every year.
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CHAPTER 5

IMAGE RECOGNITION USING

GRADIENT BOOSTING BASED ON

MULTISPECTRAL IMAGING

5.1 Introduction

Tomato Lycopersicon esculentum is a nutrition-rich and edible plant that is widely
grown throughout the world (Schreinemachers et al. 2018)and could contribute
to feeding the projected 9.6 billion people by 2050, (DESA 2018). Globally,
approximately 160 Mt of tomato are produced each year Tomatonews (2019 (accessed
July 9, 2019). Tomato is considered to be a source of income to small-scale farmers,
and, therefore, the plant contributes largely to poverty reduction. Given the economic
importance of tomato, a need to consider the factors affecting its production and find

more appropriate technological solutions to maximize its productivity.

The production of tomato is threatened by an invasive pest called tomato leafminer 7

absoluta, which attack the plant leaves, flower and fruits and interfears its growth and
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yield capacity. T. absoluta originated from South America and later spread to the rest of
the world. The pest has reproductive rate of around 12 generations per year depending
on environmental conditions. Adult lifespan ranges between 10 and 15 days for females

and 6-7 days for males (Estay 2000).

During its lifetime, a single female may produce up to 260 eggs (Uchoa-Fernandes et al.
1995). The eggs are laid singly or in small groups, mainly on young leaves (73%) and
secondly on stems (21%), sepals (5%) and green fruits (1%) (Estay 2000). and has a
life cycle with four development stages: egg, larvae, pupa, and adult. The second stage
(larvae) is the most dangerous one because the larvae at this stage can mine leaves,
develop, and feed on leaves, stems, and fruits of the tomato plant (Gebremariam 2015,

Guimapi et al. 2016).

Therefore, if the larvae is left uncontrolled at the early stages of its growth, it may
destroy all plants in the farm (Zekeya et al . 2017). Control and management of T.
absoluta has continued to be a great constraint in tomato production, hence the need
for research to devise approaches of identifying and combating it before causing great
economic losses to farmers. Infact, small farmers have incured yield loss, ranging from
80%-100%, due to T. absoluta invasion (Zekeya et al . 2017). A study by Shiberu
and Getu (2015), farmers conditions in Ethiopia, yield loss encountered were in the
range of 60.08% to 82.31%. Mohamed et al. (2012) reported the first damage in Sudan
with fruit damage ranging between 80% and 100%. Also in Tunisia, Chermiti et al.
(2009) reported losses ranging from 11% to 43%. In another study of Moussa et al.
(2013), losses were estimated up to 100% in Egypt. In tanzania where this study was
conducted, Chidege et al. (2016) reported the first case, with loss between 90% and

100%.
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Invasion of T. absoluta has, for years, been causing economic loses in the world. And, to
date, no suitable solution is available to effectively control its spread. Despite existence
of various ways of controlling the pest (using chemical pesticides and pheromone traps,
and cultivation of resistant tomato varieties), early identification of the pest is important
and therefore requires more research solutions (Zekeya et al. 2017, Tonnang et al. 2015,

Bhadane et al. 2013).

In Sub-Saharan Africa, Tanzania, for instance, the agricultural system depends on
extension officers as key facilitators in providing farmers with appropriate knowledge
on pest and disease management. However, the extension service system is currently
conducted locally by limited extension officers ' visits to provide training and workshop
to meet demands of all farmers in the given area (Maginga et al. 2018). This challenge
calls for a need to integrate sophisticated technologies, including those based on
machine learning, into agriculture to identify pest and to maximize productivity (Zahedi

et al. 2012, Bhadane et al. 2013).

This research introduces machine learning based on gradient boosting method, for
classifying infected and non-infected 7. absoluta tomato plant at early stages. The
approach reinforces classification of plant canopy images collected from a field setup
in a controlled environment (controlled environment refers to preventing the spread of

T. absoluta to other neighboring tomato fields using net house).

Prior studies have showed that image-based plant pest analysis using machine learning
algorithms result to more accurate results compared with human visual diagnosis. For
instance, studies of detecting insect infestations in fruits and vegetable using visible

color cameras such as the research of Blasco et al. (2007), summaries the application
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of NIR, UV and fluorescence computer vision systems in the identification of the most
common defects of citrus fruits. They proposed a fruit sorting algorithm that combines
different spectral information (including visible) to classify fruit according to the type
of defect. Results showed that the contribution of non-visible information can improve
the detection and identification of some defects. Compared with the results from colour
images, the detection accuracy of anthracnose increased upto 86% by using NIR images
and the accuracy of green mould was increased from 65% to 94% by using images of

fluorescence.

In addition, a computer vision system was developed for the recognition and
classification of 11 most common external defects in citrus using images acquired
in five spectral areas, including the study of NIR reflectance and ultraviolet induced
fluorescence (Kameoka et al. 2017). The proposed fruit-sorting algorithm to identify
defects in more than 2000 citrus fruits that included mandarins and oranges with overall

success rate of 86%.

Further, another study on monitoring crop health status using sensing techniques. Their
study aimed at characterising the spectral properties of Chinese cabbage (Brassica
Rapa L. subspecies Chinensis) grown under varying fertilizer treatments of nitrogen,
phosphorus and potassium. Using visible and infrared spectral measurements taken
from 60 samples inside a laboratory. Contiguous spectral regions were plotted to show
spectral profiles of the different fertilizer treatments and then classified using gradient
boosting model and random forest classifiers. Gradient boosting model yielded higher

classification accuracies than random forest (Mokoatsi et al. 2017).

Further more, a research done by Pathy et al. (2020), the study was about prediction
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of algal biochar yield along with its composition with the extreme gradient boosting
(XGB) machine learning method. In this study, an extensive grid search method was
implemented in the XGB model to explore all the possible considered input parameter
combinations for predicting the biochar yield using 13 different pyrolytically important
input parameter combinations. They used feature importance plots that helped to reveal
temperature amongst other parameters as the most influential factor. They further used
shapley Additive explanations (SHAP) (Lundberg and Lee 2017) dependence plots that
depicted the interactive effect of temperature and other input parameters on the algal
biochar yield. Summary plots showed the combined features of importance through
feature and SHAP values. Infact the developed XGB model provided new insights
on comprehending the influence of input parameters on predicting the algal biochar

yield.

The above examples of machine learning techniques showed good performance;
however, few of research was done using techniques to classify tomato pest 7. absoluta
invasion based on vegetation indices and using multispectral images in a machine
learning based on gradient boosting methods. In addition, there has been no publicly
available dataset with images of tomatoes infected by 7. absoluta. This lack of dataset
hinders progress of research on early detection of 7. absoluta in tomatoes. Therefore,
in our previous reseach, we captured both regular colored images and multispectral
images from our set up fields. We used the color images deep learning based methods
(Rubanga et al. 2020, Mkonyi et al. 2020), results showed the potential uses of images
for classification of tomato affected and non-affected. The color image dataset (Denis
et al. 2020) is deposited in a public repository to facilitate further research in 7. absoluta

identification from diseased tomato plants. This current study presents a machine
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learning approach for T. absoluta identification at early stages of the tomato plant

growth using gradient boosting method bases on multispectral images.

5.2 Materials and methods

5.2.1 Experiment setup

Four in-house experiments as shown in Table 5.1 were conducted between two seasons
(dry and wet) of tomato growth from August 2018 to April 2020. The in-house
experiment plots with dimensions 12m x 12m x 4.5m (LWH) with 0.1 mm net size .
The in-house screen house was subdivided into 3 block, each block had 12 sub-plots
of 1.2 m? planted with 16-18 plants in two rows at a spacing of 0.3 m between plants
and 0.5 m between rows as shown in Figure 5.1. The screen house were first fumigated
to eliminate any other pests or diseases which may happen to be there and at the end
of the experiment all the plants were destroyed so that 7. absoluta does not migrate
to neighboring areas. The 7. absoluta larvae for inoculation of tomato plants were be
obtained from the World Vegetable Centre in Arusha, Tanzania where they are reared

under chemical-free greenhouse environment.

The location of the study area was in Arusha regions, located in Northern part of
Tanzania, which is a sub tropical area that experience an annual average temperature
of 25°C', annual total sunshine hours of 2500 h and annual total rainfall of 900 mm.
Soil type for the experiment site are of the following composition for the top soil
(0 to 20 cm). Soil pH 6.43 slightly acid, total nitrogen (N) content percentage 0.23
adequate, total organic carbon percentage 2.33 moderate, total phosphorus (P) ppm 140,
total potassium me percentage 3.6, total calcium me percentage 18.5, total magnesium

percentage 1.02, total manganese percentage 0.37 , total copper ppm 4.48, total iron
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ppm 23.8, total zinc ppm 12.5 and total sodium percentage 2.47.

Guided by the agricultural expert and entomologist experts, the tomatoes were
inoculated with 7. absoluta in the in-house experiment divided into three blocks of 12
plots each that was controlled from other pests. The experiments was under commonly
practiced agronomic practice at the early growth stage i.e on the second day after
transplanting. The in-house subdivided into three (3) blocks, each block had 12 small

sub plots.

Table 5.1 Data collection set-up and factors considered including agronom for in-house
experiment.

Duration Season Region Varieties farming system Multispectral Scenes
Aug - Nov 2018 dry North 1 drip, furrow, bund 3 block-season

Jan - May 2019  dry North 3 drip 4 block-season

Sep - Dec 2019  wet North 3 drip 3 block seasons

Jan - Apr 2020  wet East 2 drip, furrow, bund 3 block-seasons

5.2.2 Multispectral image acquisition

Multispectral image of tomato plants canopy were collected with a 1.2 megapixel
Sequoia Parrot camera that was mounted on an image acquisition platform as shown
in Figure 5.1. Parrot Sequoia camera captures upto 40 nm wide bands in the
Green (550 nm), Red (660nm ), Red edge (735nm) and Near infrared (790nm)
regions using camera of sensor of dimensions 4.8mm x 3.6mm . The Sequoia also
captures simultaneous true-colour imagery with a 16 megapixel sensor (RGB Sequoia).
Multispectral Sequoia images were acquired from 3 m above the tomato plant canopy
with about 80 % longitudinal overlap and 70 % lateral overlap, yielding an average
Ground Sampling Distance (GSD) of 0.1 cm. The captured dataset contained images of
healthy (non-affected) and unhealthy (affected) tomato plants (the unhealthy ones were
inoculated with 7. absoluta larvae). The images were collected within 14 days from the
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In-house experiment divided
into three blocks of 12 plots (a) Parrot Sequoia image
each acquisition platform

~

Sunshine
Sensor

Green, NIR,
Red Edge

Parrot Sequoia
camera

Figure. 5.1 Multispectral image acquisition platform. (a) Zoom-in of sequoia camera image
acquisition platform placed about 3m above plant crown in in-house experiment
separated into three block with each plot of 1.2m?. (b) captured, red, green, NIR
and Red Edge bands.

day of inoculation in each experiment. Specifically the plant canopy since the leaves
are the ones affected at early growth stages of the plant. Figure 5.2 shows sample plant
canopy color images collected from the field showing three stages of damages status
(stages characterised as the extent of 7. absoluta mine density as explained in previous

subsection 4.3.4.

5.2.3 Multispectral Image Preprocessing and Calculation of image indices

After the multispectral image acquisition, images were analyzed by using
Photogrammetric processing software Pix4Dmapper Pro 4.6.1.(Sequoia Inc) as
elaborated in Figure 5.3 (¢). The preprocessing was done using Windows 10 (64-bit)
0.S with CPU: Intel(R) Core (TM) i7-4790 CPU 3.6GHz, RAM 16GB with a GPU
Intel(R) HD Graphics 4600. Images were calibrated and geolocated during the
processing using the GPS data initially geo-tagged based on data from the Sequoia

GPS (located in the Sequoia Sunshine Sensor Figure 5.1).
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(a) Healthy plant (b) Low Tuta damage (c) High Tuta damage

Figure. 5.2 Development of T. absoluta infection seen as mines on tomato leaves. (a) is the
health leaf before T. absoluta inoculation, (b) is the T. absoluta infected plants shown as low
Tuta damage on the 2" day after inoculation and (c) is the 7. absoluta infected plants shown as
high Tuta damage on the 4" day after inoculation.

Multispectral images were radiometrically calibrated based on a reference tile with
known albedo values imaged with the Sequoia camera on the ground prior to each
flight. Some of the geospatial products results during processing derived are true-colour
imagery that included orthomosaics, point clouds and digital surface models, while
those derived from multispectral imagery included colour-balanced orthomosaics,
non-balanced ‘raw’ reflectance maps and normalized difference vegetation index
(NDVI) maps. For this study we used reflectance maps as shown in Figure 5.1 (d). The
mosaicked calibrated reflectance map of respective spectral bands (red, green, red Edge
and NIR) were further used in ArcGIS Figure 5.3 (e). Figure 5.4 and Table 5.2 shows

typical reflectance spectrometer of healthy and 7. absoluta infected tomato.

Results of reflectance map tomato canopy images contained canopy portions (i.e.,
tomato plant) and non-canopy portions (i.e., soil background) as shown in Figure 5.3
(f). Using ArcGIS software, the NDVI thresholding method was used to segment
and extract the canopy portion of the canopy images based on the difference of the
reflectance spectrum between the NDVI values of plant canopy and non-canopy as

shown in Figure 5.4 (e) and statistics of reflectance summarized as shown in 5.2.
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(c) separate multispectral (d) reflectance map of (f) Boundary extract
bands mosaicked using multispectral bands of plant canopy using
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Figure. 5.3 Multispectral image preprocessing preprocessing. (c) separately multispectral
bands mosaicked using Pix4D software, (d) reflectance map of multispectral bands
(e) image classification using ArcGIS, (f) using raster and shapefile, each plant
canopy boundary extracted using ENVI software (g) a program for background
removal based on threshold segmentation.
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Figure. 5.4 Summary of reflectance map spectrometer of tomato canopy affected and
non-affected with 7. absoluta.
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Table 5.2 Statistics of Reflectance map of tomato canopy affected and non-affected with 7.
absoluta.

Status Band Min Max Mean Standard Deviation
Affected green 0.029 0.153 0.076 0.027
Affected nir 0.158 0.539 0.336 0.104
Affected red 0.025 0.147 0.062 0.025

Affected reg 0.071 0.401 0.236 0.075
Non-affected green 0.038 0.118 0.073 0.023
Non-affected nir 0.167 0.478 0.343 0.096
Non-affected red 0.032 0.130 0.060 0.020
Non-affected reg 0.118 0411 0.242 0.075

Results of the NDVI segmentation Figure 5.3 (e) were used for segmentation the
reflectance maps red, green, Red Edge and NIR. The generated canopy reflectance
maps were converted to polygon shape. Using ENVI software as shown in Figure 5.3
(f), separate plant canopy reflectance map was generated based on the DICE method
which required input as reflectance map (as raster file) and shape file that were created

in ArcGIS.

Then, a python program was made for segmentation of canopy and non-canopy pixels
from the reflectance map using the above results of NDVI canopy segmentation as
shown in Figure 5.3 (g). After reflectance map segmentation, 14 image indices for
canopy were calculated using equations in Table 5.3, Figure Figure 5.5 (b):Non-affected
plant without background and Figure Figure 5.5 (b): Affected plant without background,

elaborates the results of threshold segmentation background removal.

5.2.4 Classification of multispectral images using gradient boosting

The previous section described the preprocessing and the results of the threshold
segmentation background removal, was eventually converted to tabular. Then gradient

boosting classification analysis was carried out to analyze the relationship between
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Figure. 5.5 Selected sample of preprocessed non-affected multispectral images. (a) Spectral
bands with background not removed (b) are spectral bands with background removed, and (c)
are selected sample vegetation indices of non-affected tomato plant canopy.
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Original Red Edge Original NIR Original GREEN Original RED

(a) Affected plant canopy plant with background

No background Red Edge No background NIR No background GREEN No background RED
0 0 0

(b) Affected plant canopy plant without background

GNDI NDVI

(c¢) Affected plant canopy plant vegetation indice

Figure. 5.6 Selected sample of preprocessed affected multispectral images. (a) Spectral bands
with background not removed (b) are spectral bands with background removed, and (c) are
selected sample vegetation indices of affected tomato plant canopy.
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Table 5.3 Summary of selected vegetation indices

Index Formula Reference
d dEd
Red-Edge Stress Vegetation Index RVSI = W — RedFEdge Gitelson et al. (2003)
. . NIR .
Simple NIR Red Ratio Index NRI = Ted Abdulridha et al. (2020)
e
Difference Vegetation Index DVI = NIR — Red Richardson and Wiegand (1977)
NI
Modified anthocyanin content Index MACI = G R Gitelson et al. (2006a)
reen
d
Simple Red Green Ratio Index RGI = GRe Gamon and Surfus (1999)
reen
Anthocyanin content Index ACI = Green — NIR Sibley et al. (1999)
NI
Chlorophyll Index Cl= TedEdee dEFjige -1 Dash and Curran (2004)
Green — Red
G Red Ind RI=——— Zarco-Tejada et al. (2001
reen Red Index G Groon T+ Red arco-Tejada et al. ( )
Normalized Difference Red RedEdge — Red
Green Normalised Difference NIR — Green .
Vegetation Index GNDI = NIR T Groon Gitelson and Merzlyak (1996)
Normalised Difference Vegetation _ NIR — Red
Index NDVI = m Raun et al. (2001)

Anthocyanin reflectance Index

ARI = Green™! — RedEdge™

Gitelson et al. (2001)

Modified Anthocyanin reflectance

MARI = Green™' — RedEdge™" x NIR
Index

Gitelson et al. (2006b)

the calculated vegetation index and plant infected and non-infected with 7. absoluta.
We trained three gradient boosting classifier, XGBoost (Chen and Guestrin 2016),
LightGBM (Ke et al. 2017) and CatBoost (Dorogush et al. 2018). In this research, used
treeexplainer algorithm method (Lundberg et al. 2020) to explain the gradient boosting
classifier result from which the attributions of each feature can be analyzed based on

the sharpley additive explanations (SHAP).

Gradient boosting originally is an idea of “boosting” or improving a single weak model
by combining it with a number of other weak models in order to generate a collectively
strong model. Gradient boosting is an extension of boosting where the process of
additively generating weak models that are trained in an additive manner where at
each time step, it grows into another tree to minimize the residual of the current model

and is formalised as a gradient descent algorithm over an objective function. Gradient
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boosting as a supervised learning algorithm ,this means that it takes a set of labelled
training instances as input and builds a model that aims to correctly predict the label
of each training example based on other non-label information that we know about the
example (known as features of the instance). The purpose of this is to build an accurate

model that can automatically label future data with unknown labels.

We trained XGBoost, LightGBM and CatBoost binary classifiers using the scikit-learn
library with the same settings to compare their performances. All the model were tuned
using a 3-fold cross-validation grid-search method (Chang and Lin 2011). And the

model best parameters used for,

» CatBoost are: depth - 5, iterations -350, learning rate -0.02 , 12 leaf reg -10, border

count -17, and thread count -7.

* LightGBM are: colsample bytree - 4, learning rate - 3, max depth - 6, minimum

number of child weight - 71, number of leaves - 7, subsample - 0.937.

* XGBoost are: colsample bytree - 2, learning rate - 5, max depth - 6, min child

weight - 0 and subsample - 0.825.

The datasets were randomly split to 80% for training and 20% for validation. After
training and fine-tuning all the models, the accuracy of the model was evaluated and

reported as accuracy and validation.

5.2.5 Determination of suitable image indices using TreeExplainer

The features (vegetation index) used in the models, a TreeExplainer with
path-dependent feature pertubation was used to define what features could be used in

determining 7. absoluta status of plants. The TreeExplainer algorithm we used based
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on SHAP method. SHAP values from game theory apply to local explanations of
predictions machine learning model. SHAP values are computed by introducing each
feature, one at a time, into a conditional expectation function of the model’s output.
The calculation of SHAP is based on shapley values (Shapley 1953, Strumbelj and
Kononenko 2010, Lundberg et al. 2018) which is an important method from coalition
game theory to calculate how features contribute to determining the plant status (here

affected and not affected with T. absoluta). The formula of Shapley values is,

S|l(p -S| —1)!
gy = S BR=ISI= D (s g - s, 5.1)
SCN\i P
Where N\i = {z1,...,2,} \{z;} , 9, represent the contribution of the jth feature,
x is the feature values’ vector of the instance to be explained and p is the number
of features.f, (S) represent the prediction of feature values in subset S that are

marginalized over features that are not included in S ((Molnar (2019)).

SHAP values show how the used vegetation index and reflance maps (here referred
to as metrics) is used to classify the plant canopy into affected and non-infected T.
absoluta. This is represented either positively or negatively. SHAP was calculated
using the SHAP python package !'. SHAP summary plots and SHAP dependency plots
were created to visualize the contribution of the used metrics. SHAP Summary plots
sort features by the sum of SHAP value magnitudes over all samples to show the
different features’ contribution to classification of plant canopy. SHAP dependency
plots represent how a specific feature effects determining the plant canopy class by

plotting SHAP value together with values of the metric for all the used dataset.

Thttps://github.com/slundberg/shap
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5.3 Results and Discussion

5.3.1 Gradient boosting results

In this section, we present classification scores obtained after training the gradient
boosting methods presented in subsection 5.2.4 on the vegetation index dataset
presented in subsection 5.2.3. All vegetation index (Table 5.3) and the four reflectance
maps (Red, Green, Red Edge and NIR) of respective plant canopy of both affected
and non-affected with 7. absoluta were all used in gradient boosting methods shown
as Xgboost, LightGBoost and CatBoost_model_1 , we refered to this dataset as dataset
1. Using evaluation method based on accuracy and valition, results showed that the
CatBoost model had the highest accuracy of 79.4% and validation of 72.2% as shown

in Figure 5.7.

Using dataset 2 which had vegetation index NRI, GNDI, NDVI, MARI and the all
reflectance map: Red, Green, NIR, Red Edge. The selected vegetation index were based
on only the CatBoost model (here CatBoost_model_2). We further, used SHAP values
to determine which metrics were of importance in classification of plant canopy (SHAP
results also explained in proceesing section). We only selected only the vegetation
index (here GNDI, NDVI, MARI and NRI) and used in CatBoost_model_3 which had

the best accuracy and validation of 0.794 and 0.777, respectively.

5.3.2  Vegetation index based on SHAP summary plots

A combination of feature importance plot with SHAP dependence plot are presented
in the summary plots of Figure 5.8 (a) — (f). The input parameters (here the used

metrics as vegetation index and reflectance map) are placed on the y-axis based on their
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Figure. 5.7 Training and validation accuracies of Gradient Boosting Models. Xgboost and
LightGBoost and CatBoost_model_1 used all the selected indices and bands.
CatBoost_model_2 used GNDI, NDVI, NIR, RED, MARI, GREEN, NRI and RED
indices. CatBoost_model_3 used NDVI, GNDI, NRI and MARI indices

influence and impact to the model, the most influential variable being kept at the top.
The x-axis represents the SHAP value and the value of the feature is shown in color;
blue to pinkish-red that represents the low to high importance. The more the data points
falling in a particular range of SHAP value, the more the input variable contribute to

classification of plant canopy infected and non-infected 7. absoluta.

We show the result of CatBoost model 1, the feature importance based on SHAP values
as shown in summary plot Figure 5.8, the vegetation index and reflectance map with
high impact to plant canopy classification were revealed. We see a mix of vegetation
index and reflectance map with importance. NDVI, GNDI, NRI as the top vegetation
index with high impact to the model. We then selected only NDVI, GNDI, NRI and
MARI and all four reflectance map (NIR, Red, Red Edge and Green) and used these
selected features in another model and again determined the SHAP values to reveal the

most important features Figure 5.8.
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Results showed that the GNDI and NDVI as the most important feature. We see these
features SHAP values with high positive values and negative values widely distant
which may explain the plant canopy infected and non-infected 7. absoluta distinct
characteristics revealed in the indices. We further only considered on four vegetation
index in order model and showed the SHAP values. Results reaffirmed that NDVI and
GNDI are the most important features. It can be seen that more positive SHAP values
for NDVI and GNDI. By using the summary plot, and understanding what features
impact the classification model, these features can be used specifically in determining

plant canopy infected and non-infected 7. absoluta.

5.4 Conclusion

In this research,tomato plant canopy images were taken with a Sequoia (Parrot)
multispectral camera, preprocessed using Pix4D software, ENVI and developed
programs, results of the vegetation with four spectral bands (red, green, red edge,
NIR) were used to extract only plant canopy pixels. The vegetation index images of
individual tomato plants were classified using gradient boosting, XGBoost, LightGBM,

CatBoost.

Result, showed that the CatBoost model of vegetation index NDVI, GNDI, NRI, and

MARI images can detect diseased leaves with an accuracy of 79.4%.

Furthermore, the Tree Explainer algorithm adopting on SHAP values showed that NDVI
and GNDI were the indicators with the highest contribution to the model, and that NIR

reflection information was effective in identifying tomato pest damage.
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CHAPTER 6

CONCLUSIONS AND

RECOMMENDATION

6.1 Conclusion

In this research, having realized the potentiality of vegetables to contribute to the
required 60% increase in agriculture production to feed the projected 9.1 billion world
population by 2050 despite its high vulnerable to crop failure owing to challenges
of drought, adverse weather conditions e.t.c. We also realized the how economically
small scale farmers as the main contributors have been affected mostly due to several
loss incured during production. Therefore, we tackled the problems using recent
technological advancements such as ICT techniques and artificial intelligence that have

shown potential to contribute increased production in agriculture.

We showed the important to understand and develop more applicable techniques by
integration of ICT and artificial intelligence to enhance vegetable production especially

tomato production.

This research approach was undertaken in two main projects that focused on
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development of a data driven emerging technological transfer to tackle marginalized
low resource small scale tomato farmers. We categorised as labor constrained and ICT
constrained small-scale farmers in Japan and sub-Sahara African Tanzania respectively.
Our definition of resource constrained small-scale farmers pointed directly to two
different aspect i.e., labor and technical knowledge. We therefore approached these

aspects based on two different research locations.

The first main work as discussed in Chapter 2, smart agriculture application in labor
constrained small scale horticulture farming in Japan. In this work, we focused at the
problem of abiotic factors - micro-climate. Using ICT technological transfer of smart
agriculture system, we deployed wireless sensor network that composed of commercial
inexpensive wireless sensor network and developed database for crop environment
monitoring and management. The results of this work, was clearly on the success use
of the collected data using several consolidated methods. Deploying simple algoriths
such as GDD method, we would further recommended the research community to try
out other methods. However, in the context of inexpensice wireless sensors to meet

farmers need in enhancing increased production.

The second work was a study to tackle ICT constrained small-scale farmers using
artificial intelligence techniques. In Chapter 3, we studied the use of alternative
approaches of emerging technology in ICT constrained farmers challenged by T
absoluta damage threats. We studied how 7. absoluta would have impact on crop
harvest and also did a comprehensive farmers awareness of T.absoluta damage. Results
of conducted farm field survey and experiments implicated a need for an early detection
approach. The set farm experiments were limited to our knowledge learnt from

commonly practiced agriculture techniques. However, The first hand information
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acquired from farms was very important in designing the proceeding approaches on

the challenging T. absoluta threats,

Owing to the results of Chapter 3, we further studied and recommended artificial
intelligence techniques as suitable for image classification and quantification of T.
absoluta affected tomato. Using CNN models was the very first step, that could
contribute to devise alternative methods to support phytosanitary management measures
in T. absoluta control. We developed CNN models based on RGB images suitable for
classification and for quantification. We used pretrained transfer techniques based on
VGG16, VGG19, ResNet50 and InceptionV3 architecture to train deep CNN models

using in-house experiment RGB images collected.

In the last work of Chapter 5, tomato plant canopy images were taken with a Sequoia
(Parrot) multispectral camera, images were preprocessed using Pix4D software, ENVI
and developed programs, results of the vegetation indices with four spectral bands (red,
green, red edge, NIR) were used to extract only plant canopy pixels. The vegetation
indices images of individual tomato plants were classified using gradient boosting
algorithms; XGBoost, LightGBM, CatBoost. Result, showed that the CatBoost model
of vegetation indices NDVI, GNDI, NRI, and MARI images can detect 7. absoluta
affected plant leaves with an accuracy of 79.4%. Furthermore, with the Tree Explainer
algorithm adopting on SHAP values showed that NDVI and GNDI were the indicators
with the highest contribution to the CatBoost best models. This Chapter, enlightened
and eliminated the fact that approaches such as deep learning and machine learning
should not only be be based on RGB images, but also multispectral images. We further
showed how important NIR spectral bands was of significant importance in detecting 7.

absoluta infected plants.
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6.2 Recommendation

Chapter 2 study showed that micro-climate environment challenges could be minimized
when recommended well controlled and evenly distributed micro-climate environment
are maintained. This understanding could help in regulation of heating and cooling
facilities for optimum growing environment. It should be noted that this research was
limited to estimation of quality. With a simplified system appropriate, we recommend
integration of the system in tomato quality estimation. For the case of small scale
farmers in Japan, quality plays a very important role in tomato market and eventually
earns more income. Small-scale farmers struggle to produce tomato fruits of high
quality. A very first step would be based on the proper management and control
of micro-climate environment conditions in green houses. Therefore, with proper
micro-climate management, the crop growth would be attained at their favorable

conditions. Eventually good quality tomato fruits would be achieved.

From the results of Chapter 5, we saw not only the use of RGB images but also the
use of NDVI and GNDI indices in detecting 7. absoluta affected plants, we therefore
recommended the use of NIR reflection information as suitable for detection of tomato
plant reactions to pathogen (7. absoluta) which could be used in monitoring plant

growth and alert when economic danger thresholds arise.

Further more, scaling up our approach, we would consider generation of damage maps
based on 7. absoluta damage status. However, this would require, a well defined system
that integrates collected images of tomatoes in the field. In relation to our approach,
the developed models would be used in mobile apps in defining and quantifying 7.

absoluta attack levels. Further, the results would be shared by agriculture experts in a
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localized area. Such information, would also be useful to other agriculture experst such

as entomologist e.t.c.
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Appendix A

Farm survey - Questionnaire

The farm field survey was conducted in 9 villages of Tanzania where tomato production
was commonly practiced. A total of 332 small-scale farmers were interviewed
between August 2020 and October 2020. The questionnaire included is a Swahili
language version that was designed for the farmers since Swabhili language is the native

language.
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Dodoso

Utafiti juu ya wakulima wenye uelewa juu ya teknolojia zinazoibuka ili kukabiliana na
changamoto za Tuta absoluta(Kantangaze) kwenye nyanya: Utafiti wa uchunguzi wa Tanzania.

Arusha: Ngarenanyuki/engarenanyukie, ngabobo, nduruma
Morogoro: Kipera, Maharak hia-Doma, Mlali
Iringa: llula, Sadani na Kalenga, Ruaha mbuyuni

* Required

1. Jini la kijiji *
Check all that apply.

D Arusha - Ngarenanyuki/Engarenanyukie
|| Arusha - ngabobo

| | Arusha - nduruma

[ | Morogoro - kipera

[ | Morogoro - maharaka-Doma

[ | Morogoro - Mlali

[ ] Iringa - llula

|| Iringa -Kalenga

| ] Iringa - Ruaha Mbuyuni

2. Jinsia

Mark only one oval per row.

18-24

N

4-3

o
IS

0-5

<]
o
@
N
<)
o
P
N
=]

Juuya 70

o O O
o O O

010

o O
o O
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3. Elimu
Mark only one oval.

S/MSINGi

S/SEKONDARI

UFUNDI STADI/CERTI/DIP
ELIMU YA JUU - BSC

ELIMU YA JUU/ZAIDI MSc/PhD
SIJAENDA SHULE

4. Uzoefu wa nyanya *

Mark only one oval.

0-1 miaka
2-5 miaka
5- 10 miaka
10-20 miaka

zaidi ya miaka 20
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Wastani wa usambazaji wa ardhi ya mazao (nyanya na mazao mengine) kwa miaka 5
iliyopita katika ekari katika msimu mwaka mzima. * Asimilia (%) Distribution of
tomato compared to other crops

Check all that apply.
0% 30% 50% 80% 100%

miaka 10 nyuma D D D D D

miaka 5 nyuma

miaka 4 nyuma

miaka 2 nyuma

OO 00O
OO 00O
OO 00O
OO 00O
OO 00O

Kwa sasa

Ni majira gani (mwezi) Je, kawaida hupandwa nyanya *

Eneo na ukubwa wa shamba (Eka) *

Msimu uliyopita ulivuna kiasi gani cha nyanya (**tenga moja huingia ndoo 2 za lita 20)
*

Ni aina gani ya nyanya ulipanda *
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10. Jinsi ya kufikia nafasi ya shamba. *

Check all that apply.
|| pikipiki

|| baiskeli

[ ] gari

[ | punda

[ | miguu

11.  Changamoto kubwa/matatizo *
Check all that apply.

|| magonjwa
|| wadudu

|| wanyama wasumbufu

12.  Nini suluhisho la juu zaidi kwa matatizo tajwa hapo juu. *

Check all that apply.

[ | Matumizi ya kemikali

D mazoezi ya kiagronomia

|| Matumizi ya mitishamba(mimea dawa)
[ | Njia mchanganyiko

13.  Chanzo cha habari - ni jinsi gani unaweza kutatua changamoto? *

Check all that apply.

|| Kutumia uzoefu wa zamani
|| kutumia afsa ugani
|| wakulima wengine

[ | wataalamu wa kilimo.

115



14.

15.

16.

17.

Ni chanzo gani Cha habari hutumika? *

Check all that apply.

[ | redio

[ | runinga/TV
[ | majirani

| | Afisa ugani

Ni aina gani ya simu ambayo unatumia? *
Mark only one oval.

@ simu ya mkononi
@ simu ya mezani

@ hakuna simu

Kituo cha karibu kwa huduma za simu Kama kuchaiji simu ,je, simu huchajiwa
nyumbani au kwa jirani, *

Check all that apply.

|| kituo kipo
[ |jirani

[ | Nyumbani

Huduma za kurejesha tena muda wa maongezi ,je zipo Karibu? *

Mark only one oval.

@ karibu
() mbali
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18.

19.

20.

21.

22.

Je, matumizi makubwa ya simu yako ni yapi? *
Check all that apply.

D Kupata habari kutoka kwa wakulima
[ | Kwa madhumuni ya muamala
|| Kwa mawasiliano binafsi

Ni kwa njia gani umetumia simu yako kutatua changamoto zinazowakabili katika

kilimo? *

Je, unashirikisha vipi taarifa za mashambulio (magonjwa, wadudu) *

Check all that apply.

[ | Anakwa ana
[ | Mawasiliano ya simu

Je,ni wapi unakouza mazao yako *

Check all that apply.

|| sokoni

|| watu wa kati
|| mwingine

Mbinu ya malipo *
Check all that apply.

| | pesa taslimu
|| Pesa kupitia benki

D pesa kwa njia ya mtandao
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23.  Itachukua muda gani kutoka msimu wa mavuno mpaka kuuza mazao yako? *
Mark only one oval.
wiki 0-1
wiki 1-2

wiki 2- 3

24.  Unashirikisha habari za mashambulizi (magonjwa, wadudu) kwa wakulima wengine?

Mark only one oval.

ndiyo

hapana

25.  Kama ndiyo kwa nani na kwa namna gani *

Check all that apply.

maadishi
neno kwa neno
wakulima wengine

wataalamu wa kilimo
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26. Mara ngapi kutembelea shamba; wakati wa hatua ipi ya ukuaji wa mazao: ..maua,
matunda, mavuno.

Mark only one oval per row.

1 3 7 14 21 30

planing  C O CO CO COH CO (D
vegetative ) () (O (O (O (D
floweing O (O (O (O (O (D
fruiting o O o o o O
harvesting ) (O (O (O (O (D

27. Uharibifu wa kantangaze; nini hufikiriwa zaidi Kama uharibifu? *

Mark only one oval.

@ Uharibifu halisia wa majani

() maua

C) matunda kutobolewa

28. Jinsi gani unaweza kutambua-kuona uharibifu huo wa kantangaze? *

29. Nini mikakati ya sasa mmechukua kumdhibiti Kantangaze? *

Check all that apply.

[ | kutega tuta wakubwa

D Kuzingatia uharibifu wa uzalishwaji (kuharibu uzazi)

D matumizi ya wadudu rafiki (mahasimu na parasitoid), microbial na vimelea pathogens
[ ] Viwatilifu (kemikali)

|| Njia za kienyeji (za wakulima)

[ | Njia mchanganyiko
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Appendix B

Sample Dataset of Tomato Images

In this section, we show the detail layout of the in-house experiment set in Morogoro

region, Tanzania, and also sample images taken.

As shown in Figure B.1, layout of the in-house experiment plot. Each block with plots
of 2.72m? size. Agriculture practice was sprinkler irrigation, furrow irrigation and drip

irrigation.

As shown in Figure B.2, sample images of tomato taken at different dates in different
in-house blocks. The figure labelled with different dates. Labels such as BLK1_PL003
represent, block name (BLK1) and plant number (PL0O03).
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1.7cm 50 cm
<

20

Plants
Each cube has 1.7m by

1.6m=2.72m?2 which
65 cm il:

makes 4 rows and 5
planting holes per rows.

Sprinkler irrigation

1.7cm 50 cm
<

20

Plants
Each cube has 1.7m by

1.6m=2.72m2 which
65cm :I:

makes 4 rows and 5
planting holes per rows.

Furrow Irrigation

1.7cm 50 cm
<

20

Plants

Each cube has 1.7m by
1.6m=2.72m2 which
65cm :I:

makes 4 rows and 5

planting holes per rows.

Drip irrigation

Total plants required in the screen house are 20*8*3= 480 plants. Tylka variety will be used

Figure. B.1 Morogoro in-house experiment layout description.
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Figure. B.2 Sample dataset of tomato Images
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Appendix C

EXIF Meta details of sample Images of

cameras useds

Table C.1 Sample EXIF Meta data of Images taken using a PENTAX Camera during image

data collection experiments in October to December 2019.

Parameter

unit/value

Exif Image Size

Camera Model Name (Make)

4,608 x 2,592
PENTAX Optio WG-2 GPS (PENTAX)

Orientation Horizontal (normal)
Software Optio WG-2 GPS Ver 1.00
Modify Date 2019:10:01 15:31:33

Y Cb Cr Positioning Co-sited

ISO 125

Exif Version 230

Date/Time Original 2019:10:01 15:31:33
Create Date 2019:10:01 15:31:33
Components Configuration Y, Cb, Cr, -

Exposure Compensation 0

Metering Mode Multi-segment

Flash Auto, Did not fire
Exposure Time 1/50

F Number 3.5

Focal Length 5.0 mm

Saturation Normal

Contrast Normal

Sharpness Normal

Maker Note Pentax 5 (9,720 bytes binary data)
Flashpix Version 100

Continued on next page
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Table C.1 - continued from previous page

Parameter

unit/value

Color Space
Interoperability Index
Interoperability Version
Custom Rendered
Exposure Mode

White Balance

Digital Zoom Ratio
Focal Length In 35mm Format
Scene Capture Type
Subject Distance Range
GPS Version ID

GPS Latitude (Ref)
GPS Longitude (Ref)
GPS Altitude Ref

GPS Altitude

GPS Satellites

GPS Measure Mode
GPS Map Datum

Print Image Matching
Compression
Resolution

Thumbnail Length
Thumbnail Image

sRGB

R98 - DCF basic file (SRGB)
100

Normal

Auto

Auto

1

28 mm

Standard

Close

2.3.0.0

3.375163 degrees (South)
36.873670 degrees (East)
Above Sea Level

1144 m

11

3-Dimensional Measurement
WGS-84

(350 bytes binary data)
JPEG (old-style)

72 pixels/inch

7,042

(7,042 bytes binary data)
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Table C.4 Sample EXIF Meta data of Images taken using a Parrot Sequoia multispectral camera
during image data collection experiments in October to December 2019.

Parameter unit/value
Bits Per Sample 16
Compression Uncompressed
Photometric Interpretation BlackIsZero
Image Description 735 nm
Make Parrot
Camera Model Name Sequoia
Strip Offsets 8
Orientation Rotate 180
Samples Per Pixel |
Strip Byte Counts 2,457,600
Min Sample Value 0
Planar Configuration Chunky
Software vl.7.1
Modify Date 2019:02:11 07:41:02
Exposure Time 1/333
F Number 2.2
Spectral Sensitivity 735 nm
ISO 100
Date/Time Original 2019:02:11 07:41:02
Shutter Speed Value 1/333
Aperture Value 2.2
Max Aperture Value 2.2
Focal Length 4.0 mm
Image Number 46
Maker Note Unknown Text 0.2%00
Sub Sec Time 665,480
Sub Sec Time Original 665,480
Sub Sec Time Digitized 528,739
Focal Plane X Resolution 266.6666559
Focal Plane Y Resolution 266.6666559
Focal Plane Resolution Unit mm
Exposure Mode Auto
Focal Length In 35mm Format 30 mm

Image Unique ID

B1A262A49BD644A6885B1CBBEADAOCSB

Continued on next page
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Table C.4 — continued from previous page

Parameter unit/value
Serial Number P1040378 AE71005972
GPS Version ID 2.2.0.0
GPS Latitude Ref South

GPS Latitude Longitude
GPS Longitude Ref
GPS Altitude Ref

GPS Altitude

GPS Time Stamp

GPS Status

GPS Speed Ref

GPS Speed

GPS Map Datum

GPS Date Stamp

Black Level Repeat Dim
Black Level

Camera Serial Number
Image Size

Original Raw File Name

3.375265 degrees 36.873702 degrees
East

Above Sea Level

1150.422671 m

41:00.5

Measurement Active

km/h

0.13166818

WGS-84

2019:02:11

22

5777 5734 5696 5694

PI040378 AE71005972

1,280 x 960
IMG_190211_074102_0046_REG.TIF
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Table C.2 Sample EXIF Meta data of Images taken using a CANON Camera during image data
collection experiments in October to December 2019.

Parameter

unit/value

Exif Image Size

Camera Model Name (Make)
Orientation

Exposure Time

F Number

Exposure Program

ISO

Sensitivity Type
Recommended Exposure Index
Exif Version

Date/Time Original
Components Configuration
Shutter Speed Value
Aperture Value

Exposure Compensation
Max Aperture Value
Metering Mode

Flash

Focal Length

Flashpix Version

Color Space

Focal Plane X Resolution
Focal Plane Y Resolution
Focal Plane Resolution Unit
Custom Rendered

Scene Capture Type

Lens Model

Lens Serial Number

Lens Info

Create Date

Resolution

"1,275 x 1,431"
Canon EOS Kiss X7 (Canon)
Horizontal (normal)
1/50

4.5

Program AE

160

Recommended Exposure Index
160

230

2019:10:02 15:39:04
"Y, Cb, Cr, -"

1/49

4.56

0

4.5

Multi-segment

"On, Fired"

33.0 mm

100

sRGB

2899.328859
2894.472362

inches

Normal

Standard
EF-S18-55mm {/3.5-5.6 IS STM
0000Taca3b
18-55mm /0
2019:10:02 15:39:04
72 pixels/inch
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Table C.3 Sample EXIF Meta data of Images taken using a Samsung Camera during image
data collection experiments in October to December 2019.

Parameter unit/value

Exif Image Size 320 x 240

Camera Model Name (Make)  SM-GS570F (samsung)
Software G570FXXUICRH9
Y Cb Cr Positioning Centered

Exposure Time 1/140

F Number 1.9

Exposure Program Program AE

ISO 40

Exif Version 220

Date/Time Original 2019:02:15 10:48:03
Components Configuration Y, Cb, Cr, -

Shutter Speed Value 1/140

Aperture Value 1.9

Brightness Value 5.23

Exposure Compensation 0

Max Aperture Value 1.9

Metering Mode Center-weighted average
Flash No Flash

Focal Length 3.6 mm

Image Size 512 x 384

Maker Note Unknown (98 bytes binary data)
User Comment

Flashpix Version 100

Color Space sRGB

Interoperability Index
Interoperability Version

Focal Length In 35mm Format
Scene Capture Type

Image Unique ID
Compression

Orientation

Resolution

Thumbnail Length

Thumbnail Image

R98 - DCF basic file (sSRGB)

100

27 mm

Standard

WI13LSJAOOAM WI13LSKKO1SB
JPEG (old-style)

Horizontal (normal)

72 pixels/inch

33,027

(33,027 bytes binary data)

128



