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/ <?3+3

K�L

2009 KD500 100 4/6 7/27 1,180 30.7 a 1,706
LG3520 110 4/6 7/27 1,180 26.5 ab 1,747
34B39 115 4/6 7/29 1,211 25.4 b 1,909

2010 KD500 100 4/1 7/28 1,178 34.4 a 2,232 a
4/8 7/28 1,166 30.7 a 1,731 b
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J5Y\NE3 &) (�+4

p�q /PK
2009 NS813 125 8/3 12/2 1,176 2.5 26.3 1,563

SH3817 125 8/3 12/2 1,176 4.0 30.5 1,542
3470 127 8/3 12/2 1,176 2.5 26.3 1,062
30D44 135 8/3 12/2 1,176 3.0 29.3 969

2010 31P41 120 8/4 11/30 1,258 4.3 31.6 a 1,379 a
8/11 11/30 1,138 0.3 27.8 a 1,083 a
8/18 12/10 1,019 -PK 21.6 b 489 b

NS813 125 8/4 11/30 1,258 1.0 25.5 a 1,525 a
8/11 12/6 1,151 ]PK 24.1 b 1,344 a
8/18 12/10 1,019 -PK 21.3 c 521 b

SH3817 125 8/4 11/30 1,258 4.0 30.7 a 1,599 a
8/11 11/30 1,138 1.0 26.1 ab 1,421 a
8/18 12/10 1,019 -PK 22.0 b 929 b

30D44 135 8/4 11/11 1,125 ]PK 28.6 a 1,609 a
8/11 11/11 1,104 -PK 25.0 b 1,332 ab
8/18 12/10 1,019 -PK 25.3 b 1,089 b

:XC; 31P41 27.0 a 984 a
NS813 23.6 b 1,130 ab
SH3817 26.3 a 1,316 b
30D44 26.3 a 1,343 b

GXHC; 8/4 29.1 a 1,528 a
8/11 25.8 b 1,295 b
8/18 22.5 c 757 c

2011 31P41 120 8/2 11/21 1,316 4.0 31.7 a 1,448 a
8/12 12/5 1,150 0.3 30.5 a 1,597 a

SH3817 125 8/2 11/21 1,316 3.0 28.6 a 1,619 a
8/12 12/5 1,150 0.3 25.8 b 1,563 a

3470 127 8/2 11/21 1,316 3.0 29.6 a 1,500 a
8/12 12/5 1,150 ]PK 26.7 b 1,286 a

30D44 135 8/2 11/21 1,316 3.7 34.1 a 1,569 a
8/12 12/5 1,150 0.7 30.1 b 1,466 a
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30D44 32.1 a 1,518
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1�' 2�' �+

8t/10a 2,105 1,457 3,561
4t/10a 1,966 1,348 3,314
t!�2 * NS **

�%�.1kg/10a2

*2-10��)�&.���"-4

�)�&.1

18t/10a�2011��,/������34t/10a�,/������4
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1 8

2 8 3 2

7 26 1 2

2 8 12

1

1 7 26

2 8 3

9  

± 2

1

 

2011 1

2

8t/10a 4t/10a
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2010 2011 ±

 2010 4t/10a

1

 

2 2

4kg/10a

14kg/10a 2010 2

2011 2011

1

 

2

10a 8,500 1,700 /20kg	100kg

2,160 900 /20kg	48kg 6,340

2  

±

1 8t/10a 1

48kg/10a 2 48kg/10a

 

 

29



 

 

 

1980–1990 ±

±

±  1982

±

 

± 1

2  

±

±

±  

 

	  

± 1 1

KD500 RM100 2 8 SH3817 RM125

30D44 RM135

± 2009–2011

 2010 2011a 2012a

RM115 34B39 RM115 SH4681

RM115 KD670 RM117 ZX4101 RM118 DKC61-24 RM118 ZX7605

RM120 SH3817 RM125 8

2009–2011
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TDN

1  2011b 2012b  

TDN, total digestible nutrients

TDN= 	0.582+ 	0.85  2001

2009

 2010 1 62.2  

 

 

± ±

TDN 2-11 ±

TDN 1 1,893 kg/10a 1,392kg/10a 2

1,484 kg/10a 1,051kg/10a 3,378 kg/10a

2,443kg/10a ±

TDN 1,900 kg/10a

1,322kg/10a 870kg/10a 541kg/10a

2,770kg/10a 1,863kg/10a ±

± 18 TDN

26  

 

 

±
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±

±

18 TDN 26 ±

3,430–3,455kg/10a  2011

±

 

±

2

±

 

 

 

 

±

± 1 RM100

4 7 2 1,200

28 RM125 135 8 11

12 1 2

2

1

8t/10a 1 48kg/10a

2 48kg/10a
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± 3,378 

kg/10a TDN 2,443kg/10a

18 TDN 26
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Zea mays L.  

	  

 

 

Zea mays L.

	

 2013 	

 2 8

1

2

2

 2011  2013  2014 	

 2005  2014 	 

2

	 

 

 

2012

	 15.3 1,730mm

 11 12 	 1994
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1996 2003 2 10

2,400

 1984 	

8 2 11

1,000 1,200

	

	 

2012 8 18 30D44 RM 135

75cm 20cm 6,667 /10a 20a 	

4t/10a 48kg/10a 10kgN/10a

	

	 

2012 11 15 12 7 12 25 3

10cm 3m 	

 5–6 70 48

	 

MH90S

MR-810

SW1010WY 11 15 12 7

3 12 25 4 	

11 15 12 7 6 12 25 8a 	

8 	 

3 	

K-TSTA OCW organic cell wall

36



Ob organic b fraction 2009

	 TDN total digestible nutrients OCC

organic cell contents Oa organic a fraction

TDN=0.545 OCC+1.413Oa+26.4 1988 	 1999

	 

 2013 7 1 SLG-76

3

	

pH VBN volatile basic nitrogen

TN total nitrogen V-

 2009 	 

10

	 

 

 

3-1

3-1 	 1,896–2,189

1,007–1,016 12 7

	 11 15 12

7 12 25

4 2 16 32 	 

11 15 12 7

12 25 	 11 15

12 7
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�� �
1

11�15� 1,896 1,007 	��

12�7� 2,089 1,016 	������

12�25� 2,189 1,016 ���
1�
�����10���.

�3-1�����������������"

���
���� �!

�����
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3-1 	 	

11 15

12 7

12 25
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12 25 	 

3-2 	

11 15 586kg/10a 12 25

476kg/10a 	

11 15 158kg/10a 12 25

284kg/10a 	

743–773kg/10a 	 

 11

15 20.0% 12 25 35.8% 11 15

22.9% 12 25 37.7% 11 15

20.5% 12 25 36.5% 	  

11 15

20.9% 12 25 37.2% 	 

TDN 3-3 	

11 15

6.7% 12 25 12.0% 	TDN 11

12 11 15 54.6% 12

7 12 25 52.9% 52.4% 	 12 25

11 15 OCC OCW Ob 	 

3-4 	

11 15 18.6% 12 25 8.0% 	 

3-5 	pH 3.6–3.7

VBN/TN 5.8–6.5% V- 91.7–93.4
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�"�

11�15� 6.5 ± 0.3 4.1 ± 0.2 8.1 ± 0.9 18.6 ± 0.8
12�7� 5.1 ± 0.2 2.8 ± 0.2 5.6 ± 1.0 13.5 ± 1.3
12�25� 4.4 ± 0.3 2.3 ± 0.1 1.3 ± 0.2 8.0 ± 0.4

1������± !��.

%3-4�����	��$���#�')(DM*.

����
 ���
 
���
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 1973  2005 	

 1978  1981  

2005 	 

	

 1985 Goto  1987  2008 	 

11 15 20.5% 12 7

25.4% 12 25 36.5% 	

1% 50

 2005

11 15 12 7 193 4.9% 12 7 12 25

100 11.1% 	 1%

11 15 12 7 39.4 12

7 12 25 9.0 2005 	

11 15

12 7 12 25
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Ob

TDN 	

TDN

	 

TDN 52.9–54.6%

66.7%  2013

10 	

TDN

	 

20.5%

	 30–

35% 25–35%  2005

 2005  2005  2005 	

2005

 11 15

20.5%

	 20%

 11 15
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WSC water soluble 

carbohydrate 10%  2014 	

12 25

8.0% 	WSC

8.0%

12 25

	 

	

 

2005 	 11 15 12 25 9

TDN 	

10

	 

	

	

12 7
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Zea mays L. Sorghum bicolor Moench

1 2 1980

	 2003 2004

200ha 50ha

	 

RM

110–120

4

2 11

12

2004 1989 1991 2003 	 

Sorghum bicolor Moench × S. 

sudanense  [Piper] Stapf.

 2015 	

	 

Lolium multiflorum Lam.
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25

1

2 1

3 1

	 

 

	  

 

 

	 

	 

 

 

2013 2015

	

 2013 RM 113 2014–2015

34N84 RM108  2013

50



DH FS502 KCS404

	 

2013 4 23 2014 4 2 4 16 2015 4 2

4 17 	1

2 FS502 KCS404

2013 2014

2015 	 

1 3m×4m 12m2 75cm

20cm 2 4–6 6,667 /10a

	 2013 1.0kg/10a 2014 2015

1.0kg/10a 0.5kg/10a

	 3 	 

5t/10a 60kg/10a

48kg/10a N10kg/10a 1 31kg/10a N K 5kg/10a

	 

2 2

5 2kg

70 48 	 TDN

total digestible nutrients NRC 2001 Weiss 1992

	 

 

 

2013 4-1 	

1 2
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	1 2

1,899–2,855kg/10a FS502 KCS404

	 1 1

1,499–2,089kg/10a 553–1,119kg/10a

946–1,003kg/10a 	 FS502

	1 37–54

FS502 	 2

400–766kg/10a FS502 	 

2014 2015 1.0kg/10a 34N84

4-2 	1

1

	

	 

3,010–3,282kg/10a  1  2,220–2,384kg/10a

2 636–964kg/10a 	1

936–1,556kg/10a 818–1,448kg/10a

39–66 	

2014 2015 34N84 1

	 

34N84 4-3 	

1

2 1

1 1

	 

2,974–3,383kg/10a 1 2,270–2,390kg/10a
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2 592–993kg/10a 	1

1,000–1,840kg/10a 543–1,270kg/10a

44–77 	 0.5kg/10a 1.0kg/10a 1

	 

1.0kg/10a 34N84

4-4 	

1 2

1 	 

2,968–3,233kg/10a 1 2,270–2,374kg/10a

2 615–964kg/10a 	1

1,000–1,583kg/10a 769–1,270kg/10a

44–67 	 14.1 1

2 	 

2 4-5 	

9 18 10 2 10 29

	 20.6

27.2 540 665kg/10a

	 

2 4-6 	

	

20.9 26.1 CP, crude protein 11.0

9.0 NDF, neutral detergent fiber 62.4

54.3 NFC, non fibers carbohydrate 15.8
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26.7 ADL, acid detergent lignin 5.9

5.5 NDF 51.3 49.8 TDN 51.1 55.2

	

NFC NDF TDN

	 

 

 

2013

FS502 KCS404 26.7–27.3 	1

 37 FS502

KCS404 13.6–16.7 	

1 48–

94%  1991 47–96  2003

1989 1982

81–95 72 	

1988

	

FS502 KCS404 2

	 

5 4 1991

1997

1982 1989 	

2014 2015
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34N84

TDN

34N84 34N84 TDN

	

	 

1–2kg/10a

	2013 1.0kg/10a

	 34N84

1.0kg/10a 0.5kg/10a

0.5kg/10a 1

TDN 	

0.5kg/10a 	 

4

15

1

TDN 	2013

14.7 	

 1

61



12.2–12.7 1

14.1 TDN 	

12–13 4

	 

 2009 	2

	

NDF NFC TDN

	

TDN

2

	 

2

RM110

7,000 /10a

0.5kg/10a 15,500 /10a

13 	1

2
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2

1980 	 

	 

 

 

2014 2015

	

 34N84 RM108

RM113

1 2014

KD500 RM100 2015 KD510 RM100 2 30D44 RM135

FS502 	 

2014 4 16 2015 4 17

1 2

	 2014 5 8 2015

5 18 	

2013 10 4 2014 10 9 1

	 1 2014 4 2 2015 4
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2 2 2014 8 4 2015 8 5

	 

1 3m×4m 12m2

75cm 	 20cm 2 4–6

6,667 /10 	

0.5kg/10a 1.0kg/10a 	

3 	

1 3m×4m 12m2 75cm 20cm 2 4–

6 6,667 /10a 	

2.25m×4m 9m2 2.5kg/10a 	 

5t/10a

60kg/10a 48kg/10a N10kg/10a 1

31kg/10a N K 5kg/10a 	

5t/10a 60kg/10a 48kg/10a N10kg/10a

3t/10a

60kg/10a 24kg/10a N5kg/10a 	 1

5t/10a 60kg/10a 1 2

48kg/10a N10kg/10a 	 

2 2

5 2kg

70 48 	

1 1m2 1m×1m 3 70 48

	TDN NRC 2001 Weiss

64



1992 	 

 

 

2014 1

8 6 2 10 29 2015 1 8 4  2

10 28 2014 1 8 6 2

11 28 2015 1 8 7 2 11 24 	

2014 8 15 2015 8 21

 2014 4 24  2015 4 23 	

1 2014 7 29  2015 7 29 	2 2014

11 28  2015 11 24 	

1 2 1

	 

TDN 4-7 	

TDN 	

3,178kg/10a 2,966kg/10a 3,628kg/10a

3,386kg/10a TDN 1,908kg/10a

1,863g/10a 2,519kg/10a 2,147kg/10a 	

	 

4-8 	

1 2

 1 2 	1

1  CP

65



2014 1 2,974 1,845
2 2,925 1,759

3 3,782 2,641
4 3,290 2,148

2015 1 3,383 1,970
2 3,006 1,967

3 3,474 2,396
4 3,481 2,145

2014 3,243 2,098
2015 3,336 2,054

1 3,178 ab 1,908 a
2 2,966 a 1,863 a

3 3,628 c 2,519 c
4 3,386 bc 2,147 b

5

1 34N84
2KD500 .KD510 30D44
3

4FS502
5NS 5 ** 1
6 5 .

4-7

NS
**
NS

NS
**
NS

kg/10a
TDN
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NFC 	CP NFC

	2 2

CP NFC NDF

	CP NFC

	 

1 1 TDN NFC

	CP

	NDF

	2 TDN

	CP

	NFC

	NDF

	 

 

 

7 TDN

2 6

12 TDN 11 24 	

2

FS502 2

25.9–27.8 FS502

2 10.2

20 2015 	 

2
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1 2

10 1

	2 1

2

2

2

	 

1 TDN CP  NFC NDF

2 CP

NDF TDN NFC 	 2

1

 2 TDN 3.0 NFC 3.8

CP 0.6 NDF 2.1

2 TDN 10.5 NFC 13.0

CP 2.2 NDF 8.7 	

1 2

TDN NFC 10 NDF 8

1 2 	

1 2
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2  

 

 

1 2

	 

	 

 

 

2013 2014

	 JS-S

2 JS2105

	 1

 2 2

	 1

MH90S 90

MR820

SW1120D 	

CM190TH 1 2

RT3110 2

CR1060W 	

ITMT3520 HI
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90 95

2 	 

10a 	 1

100kg 	 

 

 

4-9 	 1 450 /10a

2 66 /10a 516 /10a 414 /10a

372 /10a 786 /10a 1 426 /10a 2

186 /10a 612 /10a 	

2 34

16 	 

4-10

	 1 1,350kg/10a 2 400kg/10a

1,750kg/10a 1,200kg/10a 900kg/10a

2,100kg/10a 1 1,350kg/10a 2 900kg/10a

2,250kg/10a 	 2

17 22 	 

1 3.00DMkg/ 2 6.06 DMkg/

3.39-DMkg/ 2.90DMkg/ 2.42DMkg/

2.67DMkg/ 1 3.17DMkg/ 2

4.84DMkg/ 3.68DMkg/ 	

2

21 8 	 
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1 1 48 48 48
72 72 72
54 54 54
24 24 24

168 144 144
84 72 84

450 414 426

2 2 -                  24 -                  
-                  72 -                  
6 36 18
-                  24

36 204 84
24 36 60
66 372 186

516 786 612

4-9

1 1
1

2 2 2

/10a)

72



?�6  6

1 61 450 414 426
2 62 66 372 186
(: 516 786 612
1 61 1350 1200 1350
2 62 400 900 900
(: 1750 2100 2250
1 61 3.00 2.90 3.17
2 62 6.06 2.42 4.84
(: 3.39 2.67 3.68

21+�25%	����"38B�0 �# ����
������B�
- �2 6������C

1+ �0 �- 

94-10� ��7�<���	&!34*�/;C

 .,>
@$/10aA

�2'=
@kg/10aA

&!34*
@DMkg/$A

11+�15%	������������1(2B�0 �) �����
��B�- �1 6������C
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1 2

	

2 	

2

1 	

1 1

	 

1 1

2

	 21

	 

 

 

 

	

2

RM110 7,000 /10a

74



0.5kg/10a 15,500 /10a 13

	1 2

	

2 3,178kg/10a TDN

1,908kg/10a

7 TDN 2

6 12 TDN 11 24 	

3.39DMkg/ 8

21

	 2

1 2 1

2

2
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	 Eremochloa ophiuroides 

Munro Hack.  

 

 

2010 2010

396,000 ha 10 2,600 

ha 17 	

2006 4 1

	

 

	 

	 Haemadipsa 

zeylanica japonica

2009

2010 	 

	

2003 	 

Eremochloa ophiuroides Munro Hack.
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2003 2005 	

	 

 

 

15a 	 2003

×Festulolium Braunii 2003 7

10 2 26

	2004

Artemisia princeps Pampan.

Rumex japonicus Houtt. 	 

2004 5 31

2004 6 14

4 kg/10a 	

2004 8 10 2 kg/10a 	

1  2005 5 20

1 kg/10a 	 

2004–2006

F1 2 	2005 5 18 8 3

F1 6–14 2–5 	

5 cm
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2004 4 2005 6 2006 5

	

1 1 1.5–5kg 	

CP 18.0 TDN 72.0 1 1 1 kg 	

TDN 2009

2010 TDN

	 5-1 	 

2005 6 20

	 2006 6

9

	 	 

2004 10 29 2005 9 30 2006 10

5 	 1m×1m

10

(SDR2)

1957 	 1

9 	 

12 CD 1.0

12 CD 0.8 	

TDN

TDN 4.5 kg/

2000 	 

 

 

2004–2006 4 10 10
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5-1 	 5

9 10 2004 2,146 2005

2,017 2006 1,980 	 

5-2 	 2004

24 Digitaria ciliaris Koeler Cyperus esculentus L.

3.3 SDR2

7 	 27.7 	 

2 2005 14

12.2 SDR2

3 	 66.7 	 3 2006

11 43.9

SDR2 1 	 81.7

	 3

SDR2 1 	

	 

5-3 	 2004 5 31 10 8

2005 4 27 10 21 2006 4 19

10 4 	 2004 80 2005 101

2006 115 2004 160 2005

110 12 11 12

115 2006 230 	 

5-1 2004

1 1

2 3 kg 31 	 15
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5-1	
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Summary 

 

Studies on self-supplied feed production method based on efficient utilization of land in 

the southern Kanto region. 

 

Kentaro Orihara 

 

The purpose of this study is to develop a method of producing self-sufficient 

feed based on the efficient utilization of land in the southern Kanto region. This paper 

discusses the following four points: 1) the cultivation method of forage crops with high 

land productivity, 2) the labor-saving and high-yield cultivation method of forage crops, 

3) the method of improving the quality of silage, 4) the safety of self-sufficient 

production utilizing abandoned lands for grazing and the protection of animal manure 

compost. 

 

First, I examined the corn double cropping system for silage to develop a 

method of cultivating forage crops with a high land productivity. In the first crop from 

early April, the very early-maturity cultivars with an RM of 100 reached the ripe stage 

in late July. In the second crop from early August, the late-maturity cultivars with an 

RM of 125-135 reached the ripe stage in late November or early December, and 

required approximately 1,200°C of effective cumulative temperature (ECT) for ripening 

and 28% of the dry matter ratio. We concluded that the combination of the very 

early-maturity cultivars (RM100) and the late-maturity cultivars (RM125-135) was 

suitable for a double cropping system in the area examined. 

Non-tilled cropping was conducted for stable cultivation in the second 
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cropping. The method of fertilization was to utilize one year’s worth of manure compost 

by 8t/10a before the cultivation of the first crops. After that, 48kg/10a of ammonium 

sulfate is used to fertilize both the first crop with tillage and the second crop with 

non-tillage. The annual yield of the corn double-cropping system was 3,378 kg/10a dry 

matter yield and 2,443kg/10a TDN yield. Compared with the two crop system of corn 

and Italian ryegrass, the dry matter yield increased by 18% and TDN yield increased by 

26%.  

 

Second, I examined the labor-saving and high-yield cultivation method of 

forage crops for contractors. This method utilized sorghum in order to develop a 

labor-saving cultivation system for forage crops. Corn of very early-maturity cultivars 

below an RM110 was used for mix cropping with the sorghum-sudangrass hybrid 

“Minekaze”. In a period when the average temperature was approximately 13°C, corn 

seeds were sown in a ratio of 7000 stalks/10a planting density and sorghum seeds were 

seeded in a ratio of 0.5kg/10a (15,500 stalks/10a planting density). The first cutting was 

conducted in the ripe stages of the corn. The second cutting was conducted during the 

dough-ripe stage of sorghum aftermath.  

The annual yield of the developed mix cropping of the sorghum-sudangrass 

hybrid “Minekaze” and corn was 3,178kg/10a dry matter yield and 1,908kg/10a TDN 

yield. The dry matter yield was 7% higher than that of the double cropping system of 

corn and Italian ryegrass and the TDN yield was 2% higher. When compared with the 

conventional mix cropping of corn and sorghum or corn double cropping, the dry matter 

yield was 6% lower and 12% lower respectively and the TDN yield was 11% and 24% 

lower.  

The labor productivity of the cropping system was 3.39 DM kg/minute, which 
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was 8% lower than that of the corn double cropping. However it was 21% higher than 

that of the double cropping of corn and Italian grass. In regards to the harvest time, the 

first cutting of the cropping system was conducted in the same period as the old mix 

cropping of corn and sorghum, while the second cutting was done one month earlier 

than that. The results show that decentralized work has the possibility to expand crop 

acreage if a part of the conventional mix cropping is replaced with the mix cropping of 

“Minekaze” and corn.  

 

Third, I examined the proper harvest time for ensiling the immature corn in 

order to improve the quality of the silage. The dry matter yield of the immature corn 

whose seeding was delayed was unchanged when the corn had been covered with frost 

during the foggage conservation period. However the later the harvest date, the more the 

dry matter ratio and the dry matter’s ear ratio increased.  

Adjusting the harvest time with foggage conservation allowed for the adjustment of the 

water content of the immature corn (which included a high percentage of water in late 

fall) and also reduced the loss of nutrition caused by seepage. However, it is not 

preferable to conduct foggage conservation after the green color fades and the plant 

begins to wither because foggage conservation decreases the amount of mono- and 

oligo-saccharide. The results indicate that the proper harvest time of immature corn is 

the period when the green color remains but withering and dryness can be observed in 

leaves during foggage conservation.  

 

Fourth, I examined the method of utilizing grazing as means for using 

abandoned cultivated lands. We made centipede glass pasture with hoof cultivation 

method and investigated the vegetation and grazing capacity under pasture 
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establishment. Pasture was established by hoof cultivation on abandoned cultivated land, 

with dominated by festulolium and southern crabgrass. As a result, the coverage of 

centipede glass in autumn increased by 3.3% in first year, 12.2% in second year and 

66.7% in third year. Centipede glass became the most dominant grass species in the 

third year.� As the coverage of centipede glass of increased, the vegetation rate in 

pasture increased and the number of grass species decreased. The grazing capacity of 

the pastures gradually increased during its development: 939 cow•day/ ha in the first 

year, 1,198 cow•day/ha in the second year, and 1,363 cow•day/ha in the third year. 

 

For the protection of the animal manure compost, I investigated heavy metal 

content in the compost produced in Kanagawa and examined its characteristics as well 

as its relation with other fertilizer components. There were more micronutrients such as 

zinc, copper, and manganese in pig manure compost than cattle and poultry manure 

composts. There was also a small amount of heavy metals such as arsenic, cadmium, 

mercury, and lead that could pollute the environment. Zinc, copper, manganese and lead 

were contained in some composts in a high concentration. In cattle manure composts in 

particular, the greatest amounts of these metals were over the recommended standard 

for sludge fertilizer as well as the value outlined in Fertilizer Control Law. These values 

showed a possibility to cause land pollution. Since there was no correlation between the 

heavy metals content in the animal manure compost and other fertilizer ingredients, it is 

difficult to infer its heavy metals content based on the analysis of a section of compost. 

Therefore, an analysis of individual components is required.  

 

According to principal compost analysis, it had been suggested that high 

densities of heavy metals contained in the animal manure compost came from 
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sub-materials. Today, many kinds of unusual materials are utilized as sub-materials for 

the purpose of cost reduction and resource recycling. Therefore it will be important to 

continue monitoring the heavy metals content in the animal manure compost and 

accumulating the data in order to reveal the origin of the heavy metals contained within.  

In this study, the following four points were discussed. First, I showed that the 

production of self-sufficient fodder can be increased by two methods: 1) improving land 

productivity by introducing a silage corn double cropping system in the southern Kanto 

region, and 2) expanding the undertaken area through work distribution among the 

contractor organization and using the mix cropping of sorgum-sudangrass hybrid 

“Minekaze” and corn. Second, I discussed the proper harvest time for ensiling the 

immature corn and indicated that it improves the quality of silage along with leading to 

the efficient utilization of self-sufficient fodder. Third, I showed the means of utilizing 

abandoned cultivated lands. Grazing in the abandoned cultivated lands contributes to 

controlling the amount of Japanese mountain leeches that cause environmental issues as 

well as developing pastures of centipede grass while continuing grazing. Forth, I 

examined the heavy metal content in the animal manure compost and showed that there 

is a need to consider the safety of animal manure compost in order to keep a sustainable 

agriculture. 

These results could be considered a contribution to the self-sufficient fodder 

production that efficiently utilizes land in the southern Kanto region of Japan and also 

considered to be a method that plays a part in stable dairy farming.  
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