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Summary：In stock analysis using integrated age-structured models, weighting factors of each likelihood 
component (e.g., for abundance indices and size composition data) directly affect the estimation of the 
model. In a past stock assessment of Pacific bluefin tuna (PBF) conducted in 2012, conflicts were recog-
nized between the length composition dataset of a purse seine fishery operating in the Sea of Japan (PS-
SoJ) and the abundance indices derived from other fisheries. After careful consideration, the initial 
weighting factor used in iterative reweighting method for the length composition dataset of PS-SoJ was 
reduced. In this paper, we provide a further analysis of procedure for determining the initial weighting 
factor of the likelihood component for the length composition dataset of PS-SoJ used in the stock assess-
ment model of PBF. We tested five scenarios involving alternative initial weighting factors. Firstly, we 
estimated an effective sample size as an initial weighting factor considering inherent accuracy and 
precision of the length composition dataset in the context of cluster sampling. Next, we illustrated the 
partial likelihood of estimated key parameter (i.e. R0) as indicator of model fit for the tested scenarios to 
suggest optimal methods. In the results, the model fit was improved in a scenario where the point 
estimate of the effective sample size except for highly uncertain years was used. The differences between 
the statistical point estimates of stock dynamics in each scenario would have significant effect on manage-
ment considering PBF’s situation. In conclusion, we discussed appropriate methods of setting initial 
weighting factors for a variety of data conditions.

Key words：stock assessment, weighting factor, effective sample size, length composition, Pacific bluefin 
tuna

1．Introduction
　Pacific bluefin tuna (Thunnus orientalis, PBF) is one of 
the most commercially important species in the world 
because of its global economic importance and intensive 
international trade1）. The PBF stock assessment working 
group (PBFWG) established by the International Scien
tific Committee for Tuna and Tuna-like Species in the 
North Pacific Ocean (ISC ; http://isc.ac.affrc.go.jp/) 
provides the details of PBF fisheries in their stock as-

sessment report2, 3）. Japan has a long history of PBF fish-
ing activity going back to pre-historic times. In recent 
years (1952-2012), Japanese total annual catches have 
fluctuated between 34,000 MT (in 1956) and 6,000 MT (in 
1990 ; Fig. 1)4）. PBF is caught by various fisheries, and 
catch data of as many as 25 fisheries in 5 countries are 
reported to ISC4）. Among those fisheries, the total catches 
of all purse seine fisheries in Japan accounts for a large 
proportion of the worldwide total catch (34.7% ; Fig. 1). 
Especially, the catch of a Japanese purse seine fishery in 
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the Sea of Japan (PS-SoJ) has been increasing since 2004, 
and it accounts for the sixth largest catch (7.1%) in the 
world on the average from 2004 and afterwards4）.
　The largest proportion of PBF caught by PS-SoJ is 
landed at Sakai-minato port. Length composition data for 
this fishery have been collected at this port by the 
Tottori Prefectural Fisheries Experiment Station since 
1983 (except for 1986 and 1990 when PBF were not 
caught). The length composition dataset of PS-SoJ is 
highly suitable as a sample from the entire exploitable 
stock because it has the largest sample size and high 
sample coverage, which means high sample coverage to 
the total catch in the world due to the large catch 
amount of this fishery (Table 1 and Fig. 1). The PBFWG 
agreed the length composition dataset of PS-SoJ to be of 
the highest quality among all fleets exploiting PBF 
because it contained high representativeness and long 
time series2）.
　In the size sampling of fisheries research, samples are 
generally drawn from landings which are clusters se
lected by fishing operations. This type of selection is 
called cluster sampling5-7）. Evaluations of the accuracy 
and precision of the length composition dataset obtained 
from each fishery should therefore be conducted care
fully when used in stock analyses, considering the nature 
as a cluster sampling fishery.
　One measure of accuracy and precision of size compo-
sition is effective sample size (ESS), as it shows the 
amount of information on the population which the 
sample represents8）. Pennington et al.6） focused on simi-
larity in samples caught in a single operation and pro-
posed a variance ratio method to estimate ESS based on 
sampling variance. The method of ESS was applied to 
the length composition dataset of Northeast Arctic cod 
(Gadus mohua), Northeast Arctic haddock (Melanogram­
mus aeglefinus), and Namibian deepwater hake (Meluccius 

paradoxus) generated by trawl surveys6）. The result 
showed that ESS was substantially less than the actual 
sample size6） due to the effect of similarity which de
creased ESS, thus decreasing accuracy and precision in 
the length composition of these species that were 
caught6, 7）. The method presented by Pennington et al.6） 
was also applied to Pacific Ocean perch (Sebastes alutus), 
and the result in this case suggested as well that a con-
sideration of similarity was important in estimating a 
reasonable ESS9, 10）.
　Stock Synthesis 3 (SS3)11）, an integrated age-structured 
stock assessment model, was used in the PBF stock 
assessment of 20122）. In the analysis of SS3, each likeli-
hood component (e.g., stock abundance indices and size 
composition data) is weighted to calculate the total likeli-
hood. Determination of the weighting factors thus affects 
the stock assessment result directly12）, and Methot and 
Wetzel11） cautioned : “Correct relative weighting among 
likelihood components is crucial to attain good model 
performance and good estimates of the variances of the 
model results.”
　Several iterative reweighting methods have been de-
vised to realize correct weighting12, 13）. In these methods, 
weighting is conducted through two stages as shown in 
Fig. 2. An interpretation of the two stages of data weight-
ing is given in subsection 2.2.

Fig. 1　 Annual catches of Pacific bluefin tuna by the purse seine fishery in the Sea of Japan (PS-SoJ), 
all purse seine fisheries in Japan (Japan PS), other fisheries in Japan (Japan) and other 
countries (Total). Partially revised from ISC4）.

Fig. 2　�Illustration of weighting procedure for length 
composition data
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　In the stock assessment of PBF conducted in 2012, the 
PBFWG discussed an iterative reweighting method that 
used a multinomial likelihood function to determine the 
weighting factor for size composition data2, 13, 14）. In this 
method, the adjusted weighting factor for size composi-
tion data is internally estimated11）. The initial weighting 
factors were determined externally using the method 
presented by Pennington et al.6）. In particular, we should 
note that the PBFWG set an upper limit of initial weight-
ing factor at 51.2 in order to reduce the influence of an 

unusually high initial weighting factor2）.
　Meanwhile, the catch per unit effort (CPUE) time 
series derived from longline fisheries targeting spawning 
aggregation and troll fisheries targeting age-0 and age-1 
fish, which were different age groups from PS-SoJ that 
targeted age-2 or older fish, were used as abundance 
indices in the stock assessment2）. In this case, each 
fishery represents the dynamics of different ages. The 
PBFWG recognized conflicts between these two CPUE 
series and the length compositions of PS-SoJ, and these 

Table 1　�Summary of the Pacific bluefin tuna purse seine fishery in the Sea of Japan and 
summary statistics for the accuracy and precision of the length composition 
dataset between 1987 and 2012 (except for 1990 due to no catches of PBF). 
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conflicts influenced the assessment results. 
　The PBFWG generally agreed with the importance of 
CPUE, because it was direct information on stock trend, 
whereas length composition data was indirect informa-
tion on it. Consequently the PBFWG reduced the initial 
weighting factors for the length composition dataset of 
PS-SoJ in the base-case stock assessment run2）. Consider-
ing the relatively high representativeness of PS-SoJ’s 
length composition dataset, further exploration of weight-
ing methods would contribute the stock analysis. 
　Maunder15） noted that the maximum likelihood ap-
proach13） ignores the uncertainty of ESS. A key for re-
solving conflicts between PS-SoJ and abundance indices 
may exist in the uncertainty of the initial weighting 
factor of PS-SoJ. Several elements such as number of 
landings and inconsistency between model assumptions 
may deteriorate the model fit.
　Firstly, with only a few landings there will, by chance, 
be years in which all landings happen to contain fish of 
similar size. In these years, estimates of ESS presented 
by Pennington et al. will be much too high and imprecise. 
It is thus difficult to estimate ESS when the number of 
landings is small. However, the minimum number of 
landings that must occur to ensure a low uncertainty in 
ESS is unknown.
　A good example of inconsistency between model as-
sumptions related to length composition is differences of 
selectivity assumption. If we assume a constant selectivi-
ty for a fishery, whereas the fishery actually has an age 
preference, this increases the uncertainty of ESS. Fur-
ther description of this point is provided in subsection 
2.2.
　These factors invalidate the use of ESS presented by 
Pennington et al.6） as the initial weighting factor of 
length composition for these years. Instead, giving a zero 
weight to the dataset with highly uncertain ESS enables 
the exclusion of the cases in which inconsistency of 
model assumptions exist. It is therefore meaningful to 
explore the influence of giving a zero weight on model fit 
and estimated stock dynamics.
　Uncertainty in ESS is important when it is used as a 
weighting factor in model analyses that use SS3, as SS3 
outputs and the good model fit are dependent on inter-
annual variability of initial weighting factors. The 
uncertainty of ESS should be checked when it is used as 
an initial weighting factor, and the confidence interval of 
ESS can be used to measure uncertainty. If the confi-
dence interval is wider than a certain level, the point 
estimate of ESS is not very useful as an indicator to 
show the annual trend of accuracy and precision, and it 
should be treated carefully considering its uncertainty. It 
is therefore essential to examine the effect of similarity 

and number of landings on the uncertainty of an esti
mated ESS. 
　In this paper, we provide a procedure for determining 
the initial weighting factor of the likelihood component 
for the length composition dataset of PS-SoJ used in the 
stock assessment model of PBF. We tested five scenarios 
involving alternative initial weighting factors. Firstly, we 
estimated an ESS as an initial weighting factor consider-
ing inherent accuracy and precision of the length compo-
sition dataset in the context of cluster sampling. We 
observed the effect of the initial weighting factors using 
profiles of partial likelihoods of abundance indices and 
size composition data. Finally, we discuss appropriate 
methods of setting initial weighting factors for a variety 
of data conditions to extend this study to other fisheries 
and assessments.

2．Materials and Methods
　2.1.　Model inputs and settings
　We used the same input data and model settings as in 
the 2012 stock assessment of PBF2） except for the initial 
weighting factor for the length composition dataset of 
PS-SoJ. Abundance indices from 5 fisheries, size 
composition data from 12 fisheries including PS-SoJ were 
used to calculate the total likelihood. The summary of 
PS-SoJ is shown in Table 1, and a description of data 
collection for this fishery is provided below.
　We conducted various simulations of setting different 
initial weighting factors for the length composition 
dataset of PS-SoJ, which is one of the size composition 
datasets used in stock assessments. Length composition 
data for which the landing date, vessel, and the number 
of fish in the landing could be identified were used for 
our analysis. These samples were available from catches 
landed from 1987 to 2012 (except for 1990 when there 
were no catches of PBF). Samples were collected at Sakai- 
minato port mainly by the Tottori Prefectural Fisheries 
Experiment Station. In recent years, staff from the Na-
tional Research Institute of Far Seas Fisheries supported 
these sampling activities. Samples were measured for 
fork length to the nearest 1 cm.
　PS-SoJ captures one school of similar sized fish and 
lands the school immediately. Fish unloaded by a carrier 
vessel in a day was defined as a landing. Samples were 
drawn from each landing, and sample sizes varied by 
landing. Since the sample size was large enough to ex-
pect good coverage across length range in each landing, 
in this study we considered a landing as a cluster. Length 
measurement was conducted in almost all landings. When 
catch amounts were large, carrier vessels unloaded their 
catches in two consecutive days. In this analysis, the 
length composition datasets of the same vessel unloading 
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a catch over two consecutive days were combined and 
treated as a single landing.
　Although the fishery season of PS-SoJ targeting PBF 
is usually from June to July, one exceptional catch of 5.6 
MT was observed in October 1997. It is known that the 
growth of PBF is rapid during summer16）. From August 
to October in the Sea of Japan, it is possible that length 
composition changes due to the growth of fish. It is also 
possible that fish from other stocks flow into the exploit-
able stocks of PS-SoJ. For these reasons, the stocks of 
June to July and October cannot be considered the same, 
and catches in October were therefore excluded from 
the dataset in this analysis. In addition, juveniles, called 
yokowa, were excluded from this analysis for three 
reasons : (1) There was the possibility that juveniles 
were caught at different fishing grounds from adults and 
could therefore form different exploitable stocks, (2) since 
juveniles were not a major target for this observation 
program, the sampling effort was totally different and 
varied by landing, and (3) since yokowa are categorized 
as catches by small purse seiners in the stock assess-
ment, the ESS for yokowa should be calculated sepa
rately.

　2.2.　Populations and structure of errors to consider
　Correct weighting requires knowledge of the error 
configuration of our observations12）. There are four types 
of error to consider regarding the analysis of proportion 
at length (Fig. 3). These errors arise because there are 
four different values : (i) the value in the true population 
that was accessible to the fishery, PTRUE, (ii) the value ob-
served in sample from the true population, POBSERVED, (iii) 
the value in the model population as a mimic of PTRUE es-
timated by the population dynamics assumptions, PMODEL, 

and (iv) the value as a mimic of POBSERVED estimated by the 
fishery assumptions, PEXPECTED.
　Firstly, we obtain POBSERVED from the true population. 
POBSERVED does not completely match PTRUE because of ob-
servation error, which is the error whose distribution, 
and likely size, researchers may infer from sampling 
method (e.g., sample size, number of landings, landing 
amount and/or representativeness of each landing). This 
type of error corresponds to precision. Secondly, PMODEL is 
constructed to mimic PTRUE and estimated from POBSERVED. 
PMODEL differs from PTRUE because of the simplified as-
sumptions related to population dynamics, and this differ-
ence is called process error. This type of error has an in-
fluence on accuracy. Thirdly, PEXPECTED is calculated from 
PMODEL using the simplified selectivity assumptions. This 
is another source of process error which arises from the 
difference between the selectivity assumption and the 
true selectivity. The error we are interested in (i.e., that 
described in likelihood) is that between POBSERVED and 
PEXPECTED. This is called total error because it is the sum 
of observation error and process error. 
　This characterization of errors gives an obvious inter-
pretation to the two stages of data weighting. As shown 
in Fig. 2 and 3, initial weighting factors are devised be-
fore the model is run. Weights appropriate for observa-
tion error are assigned at this stage. Initial weighing 
factor assumes that the sample represents the population 
which is accessible to the fishery, and this weighting fac-
tor is hereafter referred to as ESSTRUE. ESSTRUE reflects 
the precision of each year, in other words, relative inter-
annual variability of the likely size of observation error 
which is caused by inter-annual variability of the sam-
pling method. 
　At stage 2, those weighting factors are adjusted to 

Fig. 3　�Schematic illustration of the four types of error that exist between the four values of proportion at 
length : (i) the value in the true population, PTRUE, (ii) the value observed in sample from the true 
population, POBSERVED, (iii) the value expected by the population dynamics model as a mimic of PTRUE, 
PMODEL, and (iv) the value expected by the fishery model as a mimic of POBSERVED, PEXPECTED. Partially 
revised from Francis12）.
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allow for process error and reflect the accuracy in. The 
weighting adjustment occurs after the model has been 
run, or sometimes during a model run, and is intended to 
make the weighting factors more consistent with the 
model outputs. Thus adjusted weighting factor is hereaf-
ter referred to as ESSMODEL. ESSMODEL resulting from iter-
ative methods is the indicator of both accuracy and 
precision. The weighting adjustments usually apply to 
whole datasets, rather than individual data points. 
Francis12） provided an iterative reweighting method that 
can be used to calculate ESSMODEL based on the concept 
of ESSTRUE presented by Pennington et al.6）.

　2.3.　Evaluation of accuracy and precision
　Applying the principle described above, the accuracy 
and precision of the length composition dataset of PS-SoJ, 
POBSERVED, is defined as the amount of information on the 
length composition of the model population that was ac-
cessible to this fishery, PEXPECTED. The precision of the 
length composition datasets was evaluated using ESSTRUE 
which estimates the likely size of observation error 
produced by cluster sampling. Accuracy of the dataset 
was evaluated by the weighting adjustment to allow for 
process error, resulting in ESSMODEL as a reflection of total 
error and an indicator of both accuracy and precision. 
Annual estimates of ESSTRUE of the length composition 
dataset of PS-SoJ were calculated with the assumption 
that the samples within a year were selected from the 
same stock. 
　Pennington et al.6） proposed a variance ratio method to 
estimate ESSTRUE, denoted by the symbol , so that 
sampling variability based on simple random samples 
would be the same as the variability based on the cluster 
sample. The more similar a cluster is, the smaller  
becomes. This method was applied to the length compo-
sition dataset of PS-SoJ to evaluate the accuracy and 
precision of the dataset, since purse seining is essentially 
a form of cluster sampling. 
　In the estimation of ESSTRUE assuming cluster sam-
pling, similarity within a cluster is important, as strong 
similarity decreases the accuracy and precision of the 
cluster samples for the whole year5）. PS-SoJ fleets cap-
ture one school of fish and land it immediately, indicating 
that a single landing comprises a single school. The 
similarity of a landing can be scaled by the length range. 
When we quantify the length range of a landing, it is 
appropriate to use measures such as quantile deviation 
to exclude outliers, since it is possible a few fish that 
cannot find a school of their own size/age join a school of 
a different size/age. We observed the quantile deviation 
of each landing to investigate the effect of similarity on 
ESSTRUE.

　Next, we applied the variance ratio method to estimate 
 for the length composition dataset of PS-SoJ. Follow-

ing the notation from Pennington et al.6）, a ratio estimator 
of the mean length of the true exploitable stock, , is 
calculated by

　　 � 　(1)　

where Mi is the number of fish in landing i, and  is the 
mean length of the sample in landing i. The estimated 
variance of the ratio estimator  is approximately

　　 � 　(2)　

where .

The variance of the length composition if the samples 
are selected randomly, , is estimated as

　　 � 　(3)　

where  is the total number of fish landed in a 

year, and xi,j is the length of the jth fish in landing i.
　In random sampling, /m＝var( ). Then  is 

　　 � 　(4)　

　2.4.　Resampling structure using the bootstrap method
　To investigate uncertainty of the ESSTRUE, we used the 
bootstrap percentile method17） to estimate the 95% confi-
dence interval of ESSTRUE. Resampling was conducted with 
consideration given to single-stage cluster sampling5）. 
The bootstrap replicates consisted of two primary steps 
to imitate the structure of actual sampling from the true 
exploitable stock. This data generation process included 
(1) selection of the surveyed landing and (2) selection of 
measured fish within the landing. These steps were then 
followed by (3) compilation of simulated datasets of land-
ings in each year and (4) estimation of ESSTRUE from the 
simulated annual dataset that was compiled. The compi-
lation of the simulated annual dataset and ESSTRUE were 
obtained in each bootstrap trial of length measurements. 
These steps are illustrated in Fig. 4. 
　In the first step of resampling, all surveyed landings 
were resampled with replacements within each year. In 
the second step, we evaluated the effect that the selec-
tion of measured fish and the coverage within a landing 
had on accuracy and precision. Lengths were resampled 
with replacements while maintaining the original sample 
size within each landing. 
　We compared the width of the ESSTRUE confidence in-
terval and the fluctuation range of the annual medians of 
ESSTRUE. We define wide confidence interval for a year as 
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that wider than the fluctuation range of the medians be-
cause such a wide confidence interval would make the 
annual trend of accuracy and precision uncertain. The 
bootstrap trial was repeated 10,000 times, and the confi-
dence intervals were estimated using the percentile 
method through 10,000 runs.

　2.5.　Examining model fit
　We tested five scenarios to evaluate the effect of the 
different initial weighting factors on the estimated stock 
dynamics and model fit. If the dataset contains internally 
similar clusters, estimating annual ESSTRUE would require 
the consideration of two factors : the number of clusters 
(n) and the magnitude of similarity within each cluster. 
Scenarios 1-3 consider both n and the magnitude of simi-
larity. In scenario 1, the point estimates (without boot-
strap) of ESSTRUE multiplied by 0.5 were used as initial 
values, and an upper limit of 51.2 was set. These are the 
same values that were used in the 2012 stock assess-
ment2）. The method of scenario 1 down-weights datasets 
with unusually high ESSTRUE but gives the heaviest 
weight to the dataset via the upper limit. In scenario 2, 
the point estimates of ESSTRUE were used without any 
upper limit. This approach is appropriate when the 
uncertainty of ESSTRUE is sufficiently small in all the 
years. In scenario 3, the point estimates of ESSTRUE were 
used in general, and a zero weight was set for a dataset 
if its ESSTRUE had a wide confidence interval. The crite
rion of the wide confidence interval follows the descrip-
tion in the preceding subsection 2.4. The approach of 
scenario 3 is applicable when the size composition data-
sets contain a dataset for which the accuracy and preci-
sion cannot be quantified. In scenario 4, the number of 
landings (n) is used. This approach is appropriate when 
the magnitude of similarity within each cluster does not 
vary. In scenario 5, a weight of 1 is set for all the data-
sets, assuming that there is no difference in ESS across 
the years. The values in each scenario are shown in 

Table 2.
　The same approach shown in scenario 1 was applied 
to the commercial purse seine in the eastern Pacific 
Ocean (PS-EPO). This fishery and PS-SoJ were treated as 
reference fisheries because both fisheries were consid-
ered by the PBFWG to have good sampling program for 
the size composition data.
　The initial weighting factors of the other fisheries 
were calculated in two steps following the stock assess-
ment conducted in 20122）. Firstly, actual sample size was 
used in general, and the maximum initial weighting 
factor was set to 200 (i.e., the initial weighting factor was 
200 if the actual sample size was larger than 200). Sec-
ondly, the actual sample size of each fishery was scaled 
as the relative weights between years whose average 
equivalent to the average ESS of the reference fisheries 

Table 2　�Initial weighting factors for the length com-
position dataset of the purse seine fishery 
in the Sea of Japan for each initial weight-
ing factor scenario.

Fig. 4　�Illustration of the resampling methodology 
using the bootstrap method to investigate 
the uncertainty of effective sample size.
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(i.e., PS-SoJ and PS-EPO).
　We estimated ESS assuming the model exploitable 
stock, ESSMODEL, using one of the iterative reweighting 
methods of Francis12） to apply the weight adjustment fac-
tor w for each scenario (see equation TA 1.8 of Francis12）). 
Reweighting was repeated until the estimate of w con-
verged to 1. The optimal values of virgin recruitment (R0) 
in the tested scenarios were estimated using ESSMODEL. 
　When we decide which method of calculating ESS is 
appropriate for use in actual stock assessment, it is nec-
essary to confirm that the likelihood is maximized 
around the optimal R0

18） and to compare the likelihoods 
between the scenarios of different ESSs, because the best 
model is the one with the highest likelihood19）. 
　The likelihood profile was calculated by varying R0 as 
a fixed value and re-estimating the other parameters for 
each scenario. The parameter R0 was changed from 9.1 
to 10.1 in steps of 0.2, because the optimal R0 was 9.6 for 
all scenarios. We chose the partial likelihood profile of R0 
as an indicator of model fit, because R0 is a key parame-
ter that can scale the biomass size which is generally of 
interest in stock assessments. 
　The stock assessment duration was from 1952 to 2012. 
We compared the estimates of SSB among the scenarios 
to evaluate the influence of ESSMODEL on the stock assess-
ment results.

3．Results
　The quantile deviations of fish lengths within each 
landing each year as a measure of the similarity are 
shown as histograms (Fig. 5). The quantile deviations of 
fish lengths from most landings were below 10 cm, 
inferring that 50% of fish in a landing generally com-
prised a single class or were of very close year classes 
(Fig. 5).
　A summary of PS-SoJ and statistics for the ESS as-
suming the true exploitable stock, ESSTRUE, are presented 
in Table 1. Throughout the sampling history, samplers 
kept the same sample coverage (i.e., m divided by M) 
which was 0.495 on average. They also retained the 
actual sample size per landing (i.e., m divided by n) 
which was around 300 on average. From 2004, the num-
ber of vessels, the number of landings n, and the number 
of fish landed M increased. The number of landings n 
increased from 6.9 to 41.0 on average, and the annual 
actual sample size m increased proportionally to n, from 
2,075.6 to 11,914.8 on average. The estimates of ESSTRUE 
were substantially less than m throughout the sampling 
history. 
　The 95% confidence intervals of ESSTRUE for each year, 
estimated using the bootstrap method, are shown in 
Table 1 and Fig. 6. The widths of confidence intervals 

for ESSTRUE were sufficiently narrow in most years and 
clearly showed annual fluctuation (Table 1 and Fig. 6). 
The confidence intervals of ESSTRUE in years with small 
n (1987, 1993, 1994, 1995, 1996, and 2001) were wider than 
the annual fluctuation range of medians (Table 1 and Fig. 
6). In these years, the values of n were smaller than 6. 
Confidence intervals in 1989 and 1992 were not wide, 
although the numbers of landings were small (Table 1 

Fig. 5　�Histograms of the quantile deviations of the 
lengths for each year.

Fig. 6　�Estimated effective sample size ( ) for each 
year. The points (×) are medians and the 
vertical lines are 95% confidence intervals. 
The numbers at the upper side are the up-
per limits for each year. The gray line is the 
number of landings (n) for each year.
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and Fig. 6).
　For each scenario, estimates of the weighting adjust-
ment factor w, and the ESS assuming the model exploit-
able stock, ESSMODEL, are shown in Table 3. ESSMODEL was 
smaller than initial weighting factors across all scenarios 
except for scenario 5. 
　Profiles of scaled negative log likelihoods (NLLs) based 
on each data component for virgin recruitment parame-
ter R0 are shown in Fig. 7. NLLs were re-scaled by sub-
tracting the minimum values and dividing the maximum 
values of the NLL of each component as calculated under 
a different fixed R0. Abundance indices from 5 fisheries 
were used to calculate the total likelihood in this study 
following the 2012 PBF stock assessment2）. Since decom-

posed partial scaled NLLs of each fishery’s abundance 
indices exhibited similar patterns in all scenarios, the 
likelihood profiles for abundance indices are shown as 
the total of 5 fisheries for each scenario (Fig. 7a).
　Changing the initial weighting factor had little effect 
on the fit of abundance indices (Fig. 7a). The likelihood 
profiles for the length composition dataset of PS-SoJ 
exhibited remarkable differences in patterns among 
scenarios (Fig. 7b). Scaled NLLs in scenarios 1, 2, and 5 
resulted in similar patterns, and they slightly increased 
around the optimal R0, whereas scaled NLLs in scenarios 
3 and 4 came close to the minimum. The likelihood pro-

Table 3　�Estimates of ESS assuming the model ex-
ploitable stock and estimates of adjustment 
factor w for the length composition dataset 
of the purse seine fishery in the Sea of Ja-
pan for each initial weighting factor scenario.

Fig. 7　�Profiles of scaled negative log likelihoods 
(NLLs) based on each data component for 
virgin recruitment parameter R0. The pro-
files of scaled NLLs for all abundance indices 
used in the stock assessment conducted in 
2012 (a), the length composition dataset of 
the purse seine fishery in the Sea of Japan 
(b), and all size composition datasets used in 
the stock assessment conducted in 2012 other 
than the purse seine fishery in the Sea of Ja-
pan (c), are shown. The gray line represents 
the position of optimal R0 (9.6) for all initial 
weighting factor scenarios.
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file for size composition datasets of other fisheries showed 
similar patterns in all scenarios (Fig. 7c). 
　NLLs in absolute terms at optimal R0 are presented in 
Table 4. The NLL of length composition dataset of PS-
SoJ in scenario 3 decreased to 30 compared with the 
value of 43 in scenario 1. On the other hand, the NLL in 
scenario 4 was 61, the largest among all scenarios.
　The time series of SSB among all scenarios generally 
indicated different patterns, especially after the 1970s. 
Compared with scenario 1, SSB in scenarios 2 and 4 
showed maximum differences of approximately 1,614 MT 
(1.7%), and SSB in scenario 3 showed a maximum differ-
ence of roughly 2,290 MT (2.3%).

4．Discussion
　4.1.　Methods of setting the initial weighting factor
　We have shown several methods of determining the 
initial weighting factor considering the uncertainty of the 
ESS that could be used in stock assessments of PBF. 
Although this analysis can be conducted with virtually 
generated data, we used the data actually used in the 
real stock assessment. Our general policy is that we 
should have multiple options of determining the weight-
ing factors so that we can make flexible decisions based 
on data conditions. 
　If the sample is obtained from statistically well-
designed sampling, samples from each cluster will closely 
represent the true exploitable stock. Accuracy and preci-
sion will increase whether the sample size per cluster or 
the number of clusters (n) is increased. In this case, the 
actual sample size can be set as the ESS, assuming an 
equal weight per sample. We did not use this assumption 
here, however, because our data contained internally 
similar clusters.

　Methods based on the ESS assuming the true exploit-
able stock, ESSTRUE, presented by Pennington et al.6） were 
used in scenarios 1-3. These methods will be discussed 
in the following subsection, considering the results about 
the uncertainty of ESSTRUE. 
　The number of landings is also a measure of the inter-
annual variability of accuracy and precision, and it is a 
known value with certainty. We used the number of 
landings in scenario 4. If the magnitude of similarity 
varies from landing to landing, even though the number 
of landings is the same, weighting only by the number of 
landings may not be appropriate. In addition, the number 
of landings alone is not satisfactory to represent accuracy 
and precision of length composition, because relative in-
crease of the number of landings does not always con-
tribute to the accuracy and precision for the whole year, 
due to similarity of size in each landing. If each landing 
closely represents the true exploitable stock, the dataset 
should not be rejected regardless of the number of 
landings, in order to attain good model fit. 
　It is not realistic to set the ESS equally across years 
for PS-SoJ as in scenario 5, as inter-annual variability of 
accuracy and precision usually exists due to unpredict-
able environmental conditions and/or the presence of 
operational patterns of this fishery.

　4.2.　Uncertainty of ESSTRUE

　We suggested here one criterion of uncertainty of 
ESSTRUE based on confidence interval. The confidence 
intervals of ESSTRUE in six years (1987, 1993, 1994, 1995, 
1996, and 2001) were wider than that in other years, an 
outcome that is attributable to the strong similarity in 
each landing and the small number of landings (Table 1 
and Fig. 6).

Table 4　�Negative log likelihoods (NLLs) of the abundance indices component and the size 
composition component. NLLs are calculated in different model runs based on the 
different weighting factor scenarios for the length composition dataset of the purse 
seine fishery in the Sea of Japan. 
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　On the other hand, the confidence interval range of 
ESSTRUE was small when the length range was relatively 
wide, despite the small number of landings. The differ-
ences in confidence interval ranges show that uncertain-
ty is affected by both the similarity and the number of 
landings. This becomes clear when we compare the re-
sults of different years in which the numbers of landings 
were the same. In 1989 and 1994, for example, the num-
ber of landings was 4 (Table 1), and the length ranges in 
1989 were relatively wide, whereas the ranges in 1994 
were very narrow (Fig. 5). The difference in similarity 
resulted in different confidence interval ranges for 
ESSTRUE in each year (Table 1 and Fig. 6). Each landing 
in 1989 thus relatively closely represented the true 
exploitable stock, and the uncertainty of ESSTRUE was low 
under the assumption of constant selectivity.
　Considering the uncertainty, it is obvious that the high 
values of ESSTRUE observed in 1994, 1996, and 2001 do not 
constitute evidence that length composition datasets 
were unusually accurate and precise, because the confi-
dence intervals of ESSTRUE in these years were extremely 
wide (Table 1 and Fig. 6). 
　In all years other than the above six, the confidence 
intervals of ESSTRUE were sufficiently narrow and annual 
fluctuations of ESSTRUE were clear (Table 1 and Fig. 6), 
suggesting that the uncertainty of ESSTRUE was low.
　In the case of 1997, there could be different opinions on 
whether the confidence interval was wide or narrow. 
Nevertheless, the important points are that the estimate 
of the ESS can be uncertain, and the uncertainty is de-
pendent on the number of landings and the similarity of 
each landing. When the clusters are internally similar (i.e., 
the sample from each cluster contains only a little infor-
mation on the true exploitable stock), it is important to 
evaluate the uncertainty of ESSTRUE outside the stock as-
sessment model. 
　In the definition of wide confidence interval used in 
this study, the threshold of confidence interval could be 
larger and laxer if sampling process changes every year, 
or if age/size structure of the true exploitable stock re-
markably fluctuates. In this study, annual fluctuation of 
ESS in PS-SoJ does not seem to be large, and the criteri-
on of uncertainty may appropriately be applied. In other 
fisheries, however, there could be cases of large annual 
fluctuation of ESS, and examination of various criteria 
could be necessary.
　Considering the results related to the uncertainty of 
ESSTRUE, setting an upper limit as in scenario 1 is not ap-
propriate for PS-SoJ, because the heaviest weight is 
given to datasets with highly uncertain ESSTRUE. Scenario 
2 is not appropriate either, because the datasets of PS-
SoJ contained several years with highly uncertain ESSTRUE. 

The method of scenario 3 is thus the best choice, because 
it allows for the uncertainty of ESSTRUE.
　For many of the years where the ESS is set to zero in 
scenario 3, the calculated ESSTRUE is far higher than it 
should reasonably be. These high values could have been 
caused by the change of selectivity for this fishery. One 
of the simplest ways to address this problem is to re-
move these length composition data from input of the 
model, as demonstrated in scenario 3. However, simply 
omitting them may be unsatisfactory. The most reason-
able method would be combination of scenario 3 and 4, 
which means using ESSTRUE of Pennington et al.6） in 
general, applying the number of landings as a correction 
term. This would address the case of unusually high ESS 
when the number of landings was small. We did not 
examine this method because, related to the criterion 
whether the confidence interval of ESSTRUE was wide or 
narrow, there would be many different approaches to 
combine ESSTRUE and the number of landings. As a com-
mon factor throughout all approaches, we should exam-
ine the uncertainty and the reasonability of ESS consid-
ering the characteristics of the species and fishery.

　4.3.　Effect on model fit
　As mentioned in the Introduction, there were some 
conflicts of model fit between the length composition 
dataset of PS-SoJ and abundance indices in the 2012 
stock assessment2）. These conflicts can also be seen in 
the results of this study, as scaled NLLs in scenario 1 
slightly increased around the optimal R0 (Fig. 7b).
　Although the changes of the NLL of the length compo-
sition dataset of PS-SoJ was small, the results suggest 
that there are two positive effects of rejecting datasets 
with highly uncertain ESSTRUE (scenario 3 in Fig. 7b and 
Table 4) on the fit of PS-SoJ to other datasets. Firstly, the 
pattern of the likelihood profile of PS-SoJ was improved 
compared with the 2012 stock assessment (scenario 1 in 
Fig. 7b). This result shows the conflict between abun-
dance indices and length composition of this fishery was 
reduced. Secondly, in absolute terms, the NLL of PS-SoJ 
became smaller than that of the 2012 stock assessment 
(Table 4). These results indicate that extremely wide 
confidence intervals invalidate the use of ESSTRUE as an 
initial weighting factor in SS3. If we consider the median 
or other central tendency, the range of the confidence in-
terval divided by the median could be used as a measure 
of uncertainty. When that is done, only 1987, 1993 and 
1995 have high values (over 200). However, for 2004 and 
afterwards, this measure is less than 2 in all years, while 
only 1988, 1991, 1996, 2002 and 2003 have values much 
less than 10 prior to 2004. Assuming ESSTRUE of over-200 
was uncertain and rejecting the years which correspond 
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to this criterion would produce NLL between scenario 2 
and 3, which means better model fit than scenario 1. 
　Furthermore, weighting the length composition dataset 
of PS-SoJ with the number of landings had an unfavor-
able influence on the fit of the dataset (Table 4). Given 
these results, the accuracy and precision of cluster sam-
ples should be evaluated while considering the similarity 
or the representativeness of each landing for the correct 
estimation of ESSTRUE. Although there could be better 
methods to take the length composition of each landing 
into consideration, we tested ESS of Pennington et al.6） as 
one candidate and demonstrated the improvement in 
model fit.
　The length composition dataset is another source of 
information on stock abundance20）. We focused on this 
point and changed the weighting of the length composi-
tion dataset of PS-SoJ, which is just one of the size 
composition datasets, for the following reasons : (1) The 
catch amount of this fishery has been increasing in 
recent years (Fig. 1), (2) abundance indices derived from 
this fishery were not used in the 2012 stock assessment2）, 
highlighting the importance of the length composition 
data of PS-SoJ as one of the few sources of information 
on stock abundance for this fishery, (3) the abundance 
indices used in the stock assessment were derived from 
other fisheries targeting age groups that PS-SoJ did not 
target2）, and (4) the uncertainty of abundance indices 
derived from longline fisheries was a concern21）. 
　The ESS is one of indicators that show the amount of 
information on the population which the sample rep-
resents8）. If we estimate ESSTRUE for each fishery using 
the method in this study as an independent factor of 
stock assessment model assumptions, the length compo-
sition dataset that accurately and precisely describes 
stock abundance should be given an adequate weight in 
the model analysis. In the case that conflicts among data 
sources is identified, this approach should be better able 
to enhance the reliability of stock assessment results 
compared with reducing all initial weighting factors for 
length composition datasets. On the other hand, when 
ad-hoc approach leads to reasonable results, the method 
shown here would provide the same results, and there is 
little necessity of using this method.

　4.4.　Importance in stock assessment
　The ISC PBFWG has expressed deep concern for the 
stock status of PBF3）. Recognizing the importance of 
developing reference points for the conservation and 
management of PBF, the WCPFC22） formally adopted 
regulations on the catch of young PBF. In this study, 
differences of approximately 2,290 MT (2.3%) in SSB 
were observed between the results in scenario 3 and the 

2012 stock assessment. We consider it is very difficult to 
have certainty for the difference within a range of 2.3% 
in stock assessments. However, in the situation of PBF 
with its high market value and international attention to 
its stock status, difference between point estimates of 
SSB would have socio-economically important impact on 
decision of management. The stock assessment should 
therefore be conducted carefully while minimizing all 
uncertainties, and the method described in this study 
would be helpful in achieving reliable stock assessment 
results.
　As seen in the case of PS-SoJ, commercial fishery data 
has biases derived from a variety of sources such as the 
operational pattern or market forces, and usually these 
biases are not fully adjusted. When all input data is 
obtained from commercial fisheries, and fishery-
independent and statistically well-designed indices are 
not available, appropriate weighting of each input data 
would be important in conducting reliable stock assess-
ments. 
　We have presented here methods of setting initial 
weighting factors for length composition datasets based 
on ESSTRUE and identified the importance of estimating 
ESSTRUE as an objective indicator of accuracy and preci-
sion, while considering the number of landings and the 
similarity within each landing. We demonstrated that 
giving a zero weight to datasets with highly uncertain 
ESSTRUE improved the model fit of PS-SoJ, and observed 
important differences in SSB. The improvement of the 
model fit should give scientists greater confidence in 
stock assessment results when they provide advice on 
the management of PBF. 
　Although we examined five scenarios here, there 
would be many other approaches. Iterative calculation 
such as the bootstrap method used in this study would 
be helpful to select an optimal scenario. We believe that 
an approach similar to scenario 3 would be optimal even 
if we test a wider range of candidates. For other fisher-
ies, however, different scenarios may be optimal, and a 
wider range of scenarios should be considered. 
　Extending the study to other fisheries and assess-
ments would be helpful in setting more reasonable 
weighting factors for each length composition dataset 
compared with using weighting factors estimated inter-
nally in the assessment model. Moreover, testing some of 
these and a wider range of scenarios across fisheries and 
assessments would give more general and useful results.
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統合資源評価モデルに用いる 
体長組成データの重みづけ初期値評価
芝野あゆみ*†・金岩　稔**・石原幸雄***・氏　良介****・ 

志村　健****・竹内幸夫*****・余川浩太郎*****
（平成 27 年 8 月 18 日受付/平成 27 年 10 月 23 日受理）

要約：統合モデルを用いた資源解析における最重要課題の一つとして，各尤度コンポーネント（資源量指数，
サイズ組成データ等）の重みづけが解析結果に直接的に影響することが挙げられる。2012 年に行われた太
平洋クロマグロの資源評価では，この課題に対処するべく慎重な議論が交わされたが，主要な漁業である日
本海まき網のサイズ組成データと他漁業の資源量指数の間で尤度コンポーネントの最適値に矛盾が生じ，妥
当な解決策には至らなかった。そこで本研究では体長組成データの妥当な重みづけ初期値を決定する手法に
ついて，有効サンプル数とその信頼範囲を用いて決定する方法のパフォーマンスを検討した。初めに，体長
組成データそのものの精度を評価するため，クラスターサンプリングを考慮した有効サンプル数を推定した。
次に，最適な重みづけ手法を探るためシミュレーションを行い，各手法における尤度への影響を調べた。そ
の結果，本研究の手法により日本海のまき網漁業のサイズ組成データと他漁業の資源量指数間に見られる矛
盾は軽減され，尤度も改善された一方で，過去の資源評価と本研究における親魚量推定値の差は大きくはな
いことが明らかになった。しかし，世界的に注目が集まる本種の場合，僅かな差であっても資源管理に大き
な影響を及ぼすと考えられる。また，重みづけ値をどのように決定するかという問題はあらゆる魚種の資源
評価に共通するものであり，様々な漁業におけるデータの重みづけ初期値について考察する。

キーワード：資源評価，重みづけ値，有効サンプル数，体長組成，太平洋クロマグロ

*
**
***
****
*****

†

東京農業大学生物産業学研究科生物産業学専攻
東京農業大学生物産業学部アクアバイオ学科
鳥取県水産試験場
鳥取県水産課
水産総合研究センター国際水産資源研究所
Corresponding author (E-mail : ayumi.shibano@gmail.com)


