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Summary 

 
 

Chapter 1  Background and Objectives   

The most common and widespread land use and land cover (LULC) changes across the globe are 

deforestation, agricultural expansion, and urbanization. The LULC changes caused by anthropogenic 

activities significantly affect the hydrological characteristics of the landscape. Moreover, it also was 

recognized as capable of greatly accelerating soil erosion. In Cambodia, the LULC changes happened 

dramatically in the last 2 decades which was mainly due to population growth, agricultural expansion, 

and economic and urban development.  

Therefore, the research interests have been focused on the impacts of LULC changes on 

hydrological characteristics and soil erosion in Stung Sangkae Catchment, as the impacts threaten 

sustainable development in agriculture and local livelihoods if the targeted catchment is not properly 

restored through deep consideration. Accordingly, this study attempted to examine 1) What the 

changes of LULC and its hydrological characteristics were in the Stung Sangkae Catchment from 

2002 to 2015 by the SWAT model; 2) What the soil erosion severeness was in the catchment from 

2002 to 2015 by RUSLE model; 3) Based on the impacts of LULC changes on stream flow and soil 

erosion, how seasonal flow or soil erosion is mitigated in the catchment thought implementing 

countermeasures of reforestation or agroforestry practices; and 4) How the public perception on the 

importance of conservation strategies against flood/drought and soil loss in the catchment is 

deepened. 

 

Chapter 2  Research Site Description   

The Stung Sangkae Catchment (605,170 ha), which is the third-largest tributary of the Tonle Sap 

Basin River system, is located at the upper north-western part of Cambodia between 12◦130-13◦240 

N and 102◦350-103◦420 E. The topography is level within the floodplain region and rough with 

slopes at the upland portion of the catchment having elevations extending from 4 m at the most 

reduced point to 1,413 m a.s.l at the most noteworthy point. The catchment is characterized by 

distinctive topographical conditions, from flat plains to rugged areas. The main river that flows 

through the catchment, Sangkae River, lies between the tributaries of the Tonle Sap Great Lake in 

the upper western part of the catchments. The length of the river is approximately 250 km. Based on 

meteorological data collected from six weather stations in 2007-2018, the average annual 

precipitation in the study area is 1,388 mm and varied from 1,308 mm at Moung Ruessei Station to 

1,577 mm at Samlout Station with little change during the year. The major soil types in the catchment 

are (1) Luvisols (34.0%) which are a type of soil in which highly active clay migrates from the top 

part of the profile, usually gray, and is deposited in the B layer, usually brown; (2) Nitisols (27.4%) 
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which are mainly deep, well-drained soils with a stable structure and high nutrient content; (3) 

Gleysols (27.3%) which are wetland soils, which in the natural state are continuously water-saturated 

within 50 cm of the surface, for extended periods; and (4) Acrisols (11.3%) which are clay-wealthy 

soils which can be fairly vulnerable to erosion covering the area. In the catchment, floods, drought, 

and soil erosion have been happening severely. 

The Stung Sangkae Catchment, located in Battambang Province, is recognized by the Royal 

Government of Cambodia (RGC) as an important area for agricultural investment and development. 

Agriculture is the main local economic activity and the main source of livelihood in the catchment. 

Agricultural production, in particular paddy rice production, has had significant expansion and 

intensification. Consequently, the catchment has experienced intensive LULC changes, particularly 

in the last 20 years, especially the transformation of forest land to agricultural land. Additionally, the 

focus has been paid to drought and flooding as well as soil erosion happening severely more in the 

catchment. 

Accordingly, for solving facing problems in the catchment, a study on the impacts of LULC 

changes on hydrological characteristics and soil erosion was conducted, as the impacts threaten 

sustainable development in agriculture and local livelihoods if the targeted catchment is not properly 

restored. The impacts of LULC changes from 2002 to 2015 on the changes of hydrological 

characteristics, especially stream flow and soil erosion in the Stung Sangkae Catchment was analyzed, 

while three scenarios of reforestation or agroforestry to mitigate the excess fluctuation of stream flow 

and soil erosion loss in the catchment were implemented. The land use developed by the Japan 

International Cooperation Agency (JICA) in 2002 and land cover (Land Cover Maps of LMB) 

developed by Mekong River Commission (MRC) in 2015 were used in the study integrating with 

SWAT model and RUSLE model. 

 

Chapter 3  Impacts of Land Use and Land Cover Changes on Hydrological Responses and 

Soil Erosion in Stung Sangkae Catchment in 2002-2015 by SWAT model 

Based on LULC dynamics for the study periods from 2002-2015 in Stung Sangkae Catchment, 

the results showed that the catchment experienced a rapid conversion of forests to agricultural upland, 

paddy rice fields, and others. The cultivated lands (upland fields and paddy rice fields) occupied 

almost 50% of the total land area in the catchment in 2015, which increased from 20% in 2002, while 

forest cover (evergreen, deciduous, and mixed forest) occupied 43% in 2002 and declined to 30% in 

2015. Among the LULCs, the areas under upland fields increased from 4.2% to 25.2%, which is the 

highest compared to other land use, followed by paddy rice fields that increased from 15.3% to 23.9% 

between the years 2002 and 2015.  

The SWAT results showed that in the Stung Sangkae Catchment, the LULC changes have 

slightly impacted on hydrological characteristics, particularly streamflow due to the conversion from 
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the forest area, shrubland, and grassland to agricultural upland, paddy rice, and urban area. Moreover, 

it was indicated that the increase of bare land and upland fields resulted in a slight increase in annual 

and seasonal stream flow remarkably in the catchment.  

The mean annual stream flow increased in the range of approximately 0.1 m3/s to 104 m3/s and 

the highest mean annual flow changes increased by approximately 0.8 m3/s along the mainstream of 

Stung Sangkae River, especially at the downstream catchment, while the soil loss was increased from 

13.4 t/ha/y to 22.1 t/ha/y. The soil erosion maps also showed that 74.5 % of the surface area of the 

Stung Sangkae Catchment is exposed to a low to moderate risk of erosion (<10 t/ha/y) and 17.4% 

basin is at severe risk. The most affected areas are in the west of the catchment where the upland 

fields were expanded.  

The simulation performances for the monthly flow were reasonably good (R2 = 0.58, NSE = 

0.55 and PBIAS = 5 including dam construction) and (R2 = 0.64, NSE = 0.62 and PBIAS = 15 

excluding dam construction). Therefore, these calibrated parameters can be used for further future 

hydrological and environmental studies in the Stung Sangkae Catchment without the need to perform 

a sensitivity analysis. Moreover, the applicability of the SWAT model in simulating the stream flow 

and sediment dynamics of the Stung Sangkae Catchment has been validated based on the satisfactory 

values of the statistical measures of the model efficiency.  

Hence, the results of the model simulation provide confidence for the further application of the 

model to assess the hydrological response analysis due to spatial and temporal variability of the 

catchment characteristics having minimal bias within the Stung Sangkae Catchment. Moreover, the 

approach used in this research simply evaluates the contributions of individual LULC classes to the 

total hydrological responses, providing quantitative information for decision-makers to make better 

options for land and water resource planning and management. 

 

Chapter 4  Impact of Land Use and Land Cover Changes on Soil Erosion in Stung Sangkae 

Catchment in 2002-2015 by RUSLE Model 

The Revised Universal Soil Loss Equation (RUSLE) model integrated within a Geographic 

Information System (GIS) was further used to verify the result of soil loss in the catchment from the 

SWAT model in chapter 3. This research aimed to estimate the total amounts of soil loss in Stung 

Sangkae Catchment using the RUSLE model based on national LULC maps of JICA 2002 and MRC 

2015.  

Based on the assessment of LULC dynamics, the forest lands decreased significantly during the 

investigated period, notably a massive shift in deciduous and mixed forest converted to upland fields, 

paddy rice fields, and other types of land use. In terms of the soil loss in the catchment, the results 

indicated that the average soil loss was 4.6 t/ha/y and 14.4 t/ha/y for 2002 and 2015, respectively. 

The calculated total soil loss in the 2002 and 2015 periods was 2.8 million t/y and 8.7 million t/y, 
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respectively. The spatial distribution of soil loss by land use types showed that the highest erosion 

happened to agricultural land (36.2 t/ha/y in 2002 and 48.5 t/ha/y in 2015) was recorded in upper 

parts of the catchment, particularly sub-catchments 11, 12, 14, 16, 18 and 19 which was agreed with 

the corn experimental field.  

It is recommended that priority should be given to erosion hot spot areas, and appropriate soil 

and water conservation practices should be adopted to restore degraded lands. Therefore, it is 

necessary to integrate protection measures at the farm level and targeted areas of high risk of erosion, 

mainly the degraded lands along steep slopes, to limit the conversion of forest areas for agriculture 

and minimize the rate of erosion where the land is bare or with low vegetation cover.  

 

Chapter 5  Effects of Reforestation or Agroforestry on Hydrological Responses in Stung 

Sangkae Catchment 

From the results of Chapters 3 and 4, LULC changes slightly impacted stream flow and 

significantly affected soil erosion in the catchment. Hence, some scenarios of reforestation or 

agroforestry practices were applied to investigate its effects on streamflow and soil erosion, such as 

scenario 1) all areas of forest land (mixed and deciduous forest) are revived, while the other types of 

land use remain the same (15% in the area applied reforestation or agroforestry for achieving 30% 

in forest area), scenario 2) the area of agricultural upland was reforested for converting to 

agroforestry, while the other types of land use are the same (25% in the area applied reforestation or 

agroforestry for achieving 40% in forest area), and scenario 3) all the mixed forest, deciduous forest, 

and agricultural upland were revived (40% in the area applied reforestation or agroforestry for 

achieving 55% in forest area), while the other types of land use remain the same. The scenarios were 

based on the Royal Government of Cambodia (RGC) to maintain at least 50% of its land under forest 

cover to contribute to the country’s Sustainable Development Goals by 2030.  

The results of simulated stream flow by the SWAT model for the whole catchment of baseline 

land use in 2015 and three proposed scenarios showed the slight effects of reforestation or 

agroforestry on stream flow, especially seasonal stream flow. The results indicated that the discharge 

of seasonal stream flow of three scenarios decreased in the wet season (May-Oct.) and increased in 

the dry season (Nov.-April) compared with the baseline land uses. For the percentage of seasonal 

stream flow changes in scenarios 1, 2 and 3, they decreased in the wet season at about 1.4%, 3.4%, 

and 3.3%, and increased in the dry season at about 2.9%, 0.8%, and 0.4%, respectively. The increased 

stream flows are remarkably important for water resource management in the dry season and for 

flood reduction and soil conservation in the wet season.  

However, the results of the reforestation scenarios significantly showed that 25% of reforestation 

in the catchment can prevent soil erosion. Reforestation beyond 25% in the catchment is not 
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recommended from a view of soil erosion prevention, as there was no remarkable difference in 

preventing soil erosion under 25% reforested and under 40%.  

  

Chapter 6  Deeping Public Perception on the Importance of Conservation Strategies against 

Flood/Drought and Soil Loss 

Additional assessment of soil fertility changes and flood/drought was assessed through farmers’ 

perceptions through household survey (HS) of 200 respondents (100 HS at the upstream and 100 HS 

at the downstream of Stung Sangkae catchment) in 2021. To overcome the problem of data scarcity 

and evaluate soil erosion in a relatively short period, a unique approach for assessing land degradation 

from the standpoint of farmers was used. It was based on farmer assessments and observations of 

changes in their fields. These changes were expressed as soil and productivity loss through visible 

and comprehensible indicators by the farmers. For the field survey, four districts were selected from 

each ecological zone (2 districts at the upstream and 2 districts at the downstream catchment). The 

villages were selected based on their agricultural practices and accessibility. Of the total participants 

in focus group discussion (FGDs), 35% of respondents were female. The FGDs consisted of a 

mixture of closed- and open-ended questions.  

The results of the HS showed that during the last 18 years from 2002 to 2020, soil fertility 

declined significantly. In general, the soil fertility in the catchment declined from a low decline to a 

very strong decline at the upstream and the downstream of the catchment, respectively. In the 

catchment, mostly the soil fertility occurred from a fair decline to a strong decline, while the rate of 

soil fertility tended to slightly increase from a fair decline to a strong decline of 33% to 36% and 

40% to 43 % at the upstream and downstream catchment, respectively. In contrast, the rate of a very 

strong decline in soil fertility mainly happened at the upstream catchment rather than at the 

downstream catchment, which was 18% and 11%, respectively. However, based on the FGD, the 

farmers responded that their agricultural yield only slightly declined during the study period. This 

was because the amounts of chemical fertilizer consumption were used more than before to sustain 

the yield of their products.  

The catchment mostly experienced low drought at the upstream and downstream catchment in 

2002 and 2015; however, in 2020 the catchment experienced extreme drought rather than low 

drought in the catchment, particularly in the lowland catchment. At the upstream and downstream 

catchment, the flooding occurred at a moderate level. In 2002, the flooding occurrence at the 

upstream catchment (42%) was higher than at the downstream catchment (33%); however, in 2015-

2020 the flooding experienced at the downstream catchment, while the rate of flooding also increased 

from moderate to the extreme level, particularly in 2020. Farmers confirmed that they experienced 

not only drought but also flooding while there was water released from the Sek Sok multi-purpose 

dam at the upstream catchment. 



vi 

Chapter 7  Conclusions and Recommendations   

In this research, the national LULC maps of JICA 2022 and MRC 2015 were used to evaluate 

their impacts on the hydrological characteristics and soil erosion in Stung Sangkae Catchment. It was 

shown that the forest lands decreased significantly during the investigated period, especially a 

massive shift in deciduous and mixed forest converted to upland fields, paddy rice fields, and other 

types of land use. The upland fields increased 21% from 4.4% in 2002 to 25.2% in 2015, while the 

forest land occupied 43% in 2002 and declined to 30% in 2015 for a whole catchment area (605,170 

ha). The statistical agreement of R2=0.64, NSE=0.62, and PBIAS=15 (without dam construction 

period) and R2=0.58, NSE=0.55, and PBIAS=5 (with dam construction period) for the SWAT model 

is found to be satisfactory for the Stung Sangkae Catchment.  As of the 2002-2015 period, even 

though the LULC was significantly changed, the streamflow was slightly increased; however, soil 

erosion significantly impacted which was 13.4 t/ha/y in 2002 and 22.1 t/ha/y in 2015. The highest 

mean annual flow changes increased by approximately 0.8 m3/s along the mainstream of Stung 

Sangkae River, especially downstream, while medium mean annual flow increased by 0.3 m3/s 

across a whole catchment.  

For the soil erosion analysis with the RUSLE model, the average soil loss from the catchment 

was 4.6 t/ha/y in 2002 and 14.4 t/ha/y in 2015, while the highest erosion area was found in parts of 

the upland of the Stung Sangkae Catchment, mainly due to agricultural land expansion, steep slopes, 

and degradation of the vegetation. Both models could capture reasonable soil loss agreement 

compared with the experimental corn field, while countermeasures of reforestation or agroforestry 

of 25% can slightly reduce streamflow, but significantly prevent erosion in the catchment.  

 It could be concluded that the approach used in this research simply evaluates the contributions 

of individual LULC classes to the hydrological characteristic, providing quantitative information for 

decision-makers to make better options for land and water resource planning and management. It can 

be widely applied to a variety of catchments, where time-sequenced digital land cover data are 

available, and to predict hydrological consequences of LULC changes. 25% of reforestation or 

agroforestry can decrease the stream flows in the wet season and increase them in the dry season 

which is more important for water resource management in the dry season and for flood reduction in 

the wet season and could significantly prevent soil erosion, while the reforestation more than 25% is 

not recommended in the catchment. 

The outcomes of farmers’ perceptions on soil fertility changes and flood/drought indicated that 

the rate of a very strong decline in soil fertility observed in the upstream catchment at 18% and in 

the downstream catchment at 11%.  

As mentioned above, this study has been conducted to evaluate the impacts of land use and land 

cover changes on hydrological characteristics and soil erosion in Stung Sangkae catchment, 

Cambodia. Although the Royal Government of Cambodia (RGC) has a direction to maintain at least 
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50% of its land under forest cover to contribute to the country’s Sustainable Development Goals by 

2030, the outcomes of this study indicated the area of agricultural upland is reforested for converting 

agroforestry (25% in area applied reforestation or agroforestry for achieving 40% in forest area) was 

very meaningful to decrease the stream flows in the wet season and increase them in the dry season, 

as well as to eliminate soil erosion remarkably.
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和文要旨 

 

 

1章 研究の背景と目的 

地球上の多くの地域で生じている土地利用と被覆の変化は、森林伐採とともに農地化や都市化の影響

を受けて進んでいる。これら人為的にもたらされた土地利用と被覆の変化は、地域における水文特性に深

刻な影響を及ぼしている。加えて、この人為的な土地利用と被覆の変化は、加速的に土壌侵食を引き起こ

していることが認識されている。カンボジアでは最近の 20 年間に人口の増加、農業の発展、経済的および

都市化の拡大によって、顕著に土地利用と被覆の変化が進行している。 

カンボジア国スツゥン サンカェ流域においても、流域における土地利用と被覆の変化が水文特性および

土壌侵食に与える影響について関心が注がれてきた。これは、対象の流域における土地利用と被覆の変

化とその影響について調査が進められ、その結果に基づいて適切に保全対策が実施されなければ、持続

可能な農業生産と生存環境に深刻な脅威になることが懸念されるためである。 

従って、次の項目について研究が取り組まれた。1）どのようにカンボジア国スツゥン サンカェ流域が 2002

年から 2015 年の間に土地利用と被覆が変化し、水文学的反応に影響したのかを SWAT モデルを適用し

て評価する、2）RUSLEモデルに基づき 2002年から 2015年における土壌侵食の程度について評価する、

3）この土地利用と被覆の変化による河川流量と土壌侵食への影響に基づき、流域で実施される植林やア

グロフォレストリーによって、どのように河川流量の季節変動や土壌侵食を抑えられるのかについて評価す

る、そして 4）流域において保全対策を進めるために、侵食に伴う土壌肥沃度の低下や洪水・干ばつに対

する認識度について議論を進めることである。 

 

2章 研究対象地域 

研究対象地域は、カンボジア国北西の北緯 12◦130-13◦240で西経 102◦350-103◦420に位置するトンレサ

ップ流域の 3番目に大きな支流であるスツゥン サンカェ流域（流域面積 605,170 ha）である。この地域は標

高 4 mから 1,413 m範囲に広がっており、低平地から傾斜の厳しい険しい高地を擁する特徴的な地形条件

を呈している。流域を流れる主河川はサンカェ川（流路延長 250 km）で、トンレサップ流域の支流間を流れ

ている。流域内の 6 か所の観測所で 2007 年から 2018 年に記録された気象データに基づくと、Moung 

Ruessei観測所では 1,308 mmで Samlout観測所では 1,577 mmを記録するなど地域差はあるものの、平均

年間降水量は 1,388 mm であった。また流域は Luvisols（34.0%）、Nitisols（27.4%）、Gleysols（27.3%）、

Acrisols（11.3%）等の土壌で覆われている。この Luvisols、Nitisols、Gleysols で覆われている地域は、深刻

な洪水や旱魃、土壌侵食が発生しており、関心が注がれている。 

研究対象のスツゥン サンカェ流域はバッタンバン州に位置しており、カンボジア政府から農業投資と発展

が期待されている地域である。農業は地域住民にとって最も重要な経済活動であり、主な収入源となって

いる。また、農業の中でも稲作が注目されており、拡大と強化されている。これらの農業的発展を背景に森
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林域の開発が進み、結果として過去 20年間に顕著な土地利用と被覆の変化が生じた。加えて流域で年々

厳しさを増す洪水や旱魃や土壌侵食に、関心が集まっている。  

 そこで対象の流域で生じているこれらの問題に対処するために、カンボジア国スツゥン サンカェ流域にお

ける土地利用と被覆の変化が、流域における水文特性および土壌侵食に与える影響について研究を実施

した。対象の流域において適切に保全対策が実施されなければ、この土地利用と被覆の変化が持続可能

な農業生産と生存環境に深刻な脅威になるためである。具体的には 2002 年から 2015 年までの土地利用

と被覆の変化が、どのように水文特性に影響したのかを SWATモデルを適用して評価するとともに、流域で

対策として実施される植林やアグロフォレストリーにあたっての 3 つのシナリオが河川流量の変動や土壌侵

食を抑えられるのかについて評価に取り組んだ。2002 年の土地利用と被覆の解析にあたっては JICA から、

2015 年についてはメコン委員会から発行された高解像度の土地利用・被覆図に基づき、SWAT と RUSLE

のモデルを適用して研究を進めた。 

 

3 章 SWAT モデルに基づいたスツゥン サンカェ流域における 2002 年から 2015 年の土地利用と被覆の

変化が水文学的反応と土壌侵食に与える影響について 

カンボジア国スツゥン サンカェ流域における 2002年から 2015年の土地利用と被覆の変化を解析した結

果、急速に森林域が畑地、水田、その他に転用されていることが明らかとなった。2002 年に 20％であった

耕作地（畑地や水田）の占める百分率は、2015年には約 50％に達していた。一方、常緑林、落葉林、混合

林等の森林域については、2002年には 43％を占めていたが 2015年には 30％までに低下していた。2002

年から 2015年の土地利用と被覆の変化を詳細に見ると、畑地の占める百分率は 4.2%から 25.2%と最も拡

大しており、次いで 15.3%から 23.9%に拡大した水田であった。 

スツゥン サンカェ流域における SWATモデルを適用した解析結果から、流域における土地利用と被覆の

変化は、僅かではあるが明らかに水文特性に影響を及ぼしていた。特に河川流量に与える森林域、低木

域や草地から畑地、水田や都市的利用への転用の影響が顕著であった。さらに、裸地や畑地の増加が河

川流量の年変動と季節変動に明らかに影響していることが明らかとなった。対象の流域における 2002年か

ら 2015年の土地利用と被覆の変化にともなって、平均年間河川流量の変動幅は 0.1 m3/sから 104 m3/s と

拡大しており、さらに 2015年の平均最大流量は 2002年と比べて 0.8 m3/s増大していた。この平均最大流

量の増加傾向は下流域で顕著であった。 

一方、土壌侵食量も 2002年の 13.4 t/ha/yから 2015年には 22.1 t/ha/yに増大していた。作成した土壌

侵食の危険度分類図からは、スツゥン サンカェ流域の 74.5％は低・中程度（<10 t/ha/y）に分類されたが、

17.4％の地域では厳しい土壌侵食が生じる高程度に分類された。これら高程度の土壌侵食に分類された

17.4％は、主に畑地利用されていた。 

2002 年と 2015 年における土地利用と被覆から、月間流量に基づいて不確実性解析および較正や検証

を行った。2016年に建設されたダムの影響下での解析結果における決定係数（R2）は 0.58、Nash-Sutcliffe

モデル効率係数（NSE）は 0.55、バイアス率（PBIAS）は 5 で、ダムの影響を除いた解析結果では、決定係

数（R2）は 0.64、Nash-Sutcliffeモデル効率係数（NSE）は 0.62、バイアス率（PBIAS）は 15であった。この結
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果から決定係数（R2）、Nash-Sutcliffe モデル効率係数（NSE）、バイアス率（PBIAS）ともに基準値を超えて

おり、一定の評価を与えられる結果となった。併せて、河川流量と土砂輸送の予測における SWAT モデル

のモデル効率性について統計的解析が行われた結果、十分に基準値を超えて納得できる結果であること

を明らかとなった。 

以上の結果より、この研究で示した較正値を適用することによって、感度評価を実施しなくても今後の流

出解析や環境評価に適用できることを示すことができた。よってここでのモデルシミュレーションは今後の空

間的および時間的変動を見る流出解析の適用においても十分な信頼性を与えつつ実施できることを示し、

流域管理に必要な事項の基礎情報を与えるものと評価できた。 

 

4章 RUSLEモデルに基づいたスツゥン サンカェ流域における 2002年から 2015年の土地利用と被覆の

変化が土壌侵食に与える影響について 

スツゥン サンカェ流域における GIS解析結果に RUSLEモデルを適用して流亡土量を求め、3章で述べ

た SWATモデルによる流亡土量と比較して検証を進めた。具体的には、2002年に JICAから、2015年にメ

コン委員会から発行された各々の高解像度の土地利用・被覆図に基づいて、その間における土地利用と

被覆の変化が土壌侵食による流亡土量に与える影響について評価を試みた。 

土地利用と被覆の変化については、前述の通り 2002年から 2015年の間に森林面積は顕著に低減した。

注目するべきは落葉林および混合林が畑地や水田、その他の土地利用に転用されていた点である。

RUSLEモデルで算出された 2015年の年流亡土量は 14.4 t/ha/yで 2002年の 4.6 t/ha/yを大きく上回る結

果となった。特に高い土壌侵食（36.2 t/ha/y (2002), 48.5 t/ha/y (2015)）が発生していたのが、中央部と南西

部の高原地帯と畑地帯（特に、小流域 11, 12, 14, 16, 18, 19）であることが明らかとなった。併せて、これらの

計算結果は、2019年に公表された現地での実験結果とほぼ一致していた。 

これらの土壌侵食におけるホットスポットでは優先的に適切な土壌および水保全対策が実施されることが

望まれる。土壌侵食のリスクの高い農地では適切な土壌保全対策が実施されるとともに、急傾斜地の荒廃

地では森林域からの農地転用を抑えることが重要である。 

 

5 章 スツゥン サンカェ流域における植林やアグロフォレストリーの適用が水文学的反応に与える影響につ

いて 

前述の 3 章と 4 章の結果から、土地利用と被覆の変化は僅かに河川流量に影響しているとともに、土壌

侵食には顕著な影響を与えていることが明らかとなった。そこで以下のシナリオによる植林やアグロフォレス

トリーの適用が河川流量や土壌侵食に与える影響について評価を試みた。シナリオ 1）2002 年度に戻すよ

うに全ての混合林および落葉林が再生されるが他の土地利用は 2015 年度の状態を維持（植林面積率

15%、現有森林面積と合わせて森林率 30％）、シナリオ 2）畑地はアグロフォレスト化されるが他の土地利用

は 2015年の状態を維持（植林面積率 25%、現有森林面積と合わせて森林率 40％）、シナリオ 3）全ての混

合林、落葉林、畑地は 2002 年の状態に再生するが他の土地利用は 2015 年の状態を維持（植林面積率
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40%、現有森林面積と合わせて森林率 55％）、の 3つのシナリオである。これらのシナリオは、カンボジア政

府が 2030年までの SDGsを達成するために、50％の森林率を回復する旨の方針に基づいている。 

2015 年の状況下と植林やアグロフォレストリーが適用された 3 つのシナリオ下で、スツゥン サンカェ川に

おける河川流量を比較した結果、僅かに季節流量に差異が生じることが明らかになった。つまり、3 つのシ

ナリオ下でのスツゥン サンカェ川における河川流量は、雨期（5月から 10月）に減少して、乾期（11月から 4

月）に増大する傾向が見られた。具体的には、1）から 3）のそれぞれのシナリオで、雨期における河川流量

は 2015年を基準に 1.4%、3.4% 、3.3%減少し、乾期には 2.9%、0.8%、0.4%増大する結果となった。これら

の植林やアグロフォレストリーが適用された 3 つのシナリオ下で得られた河川流量の変化は僅かではあるも

のの、乾期には水資源の確保に繋がり、雨期には洪水や土壌保全に寄与することを意味している。 

一方、これらの植林やアグロフォレストリーが適用された 3 つのシナリオ下における土壌侵食量の変化を

調べた結果、植林面積率を 25％まで進めることで、顕著に土壌侵食の抑制効果が発現することが明らかと

なった。しかし 25％を超えての植林は抑制効果の向上が見込まれないため、推奨できないことが分かった。 

 

6 章 スツゥン サンカェ流域における洪水・干ばつや土壌侵食に対する保全対策に関する社会的認識の

深化について 

スツゥン サンカェ流域における 200戸（上流域 100戸、下流域 100戸）の現地農家を対象として、洪水・

干ばつや土壌肥沃度低下に対する認識調査を 2021 年に実施した。具体的な調査内容は現地農家自身

が所有する農地を対象として、土壌の状態や生産量の変化等、現地農家が理解できる内容で評価した。

生態学的な区分に従って上流域で 2 地区、下流域から 2 地区が選ばれ、対象の農村は農業体系に基づ

いて選定された。対象農家を代表して出てきた回答者の内、女性は 35％であった。また質問は選択回答

形式と自由回答形式の両方で構成することとした。 

先ず 2002年から 2020年に至る 18年間における土壌肥沃度の変化について質問した結果、全体的に

は僅かにまたは著しく土壌肥沃度が低下していると回答する農家が、上流域、下流域に関わらず目立った。

土壌肥沃度が僅かに改善していると農家の割合は、僅かにまたは著しく土壌肥沃度が低下していると回答

した農家に対して、上流域では 33% と 36%で、下流域では 40%と 43 %に過ぎなかった。更に著しく土壌肥

沃度が低下していると回答した農家率については、上流域では 18％であり下流域では 11％であった。しか

し生産量については僅かに低下しているのみであり、これは投入する化学肥料によって生産量が維持され

たためと考察された。 

干ばつに関しては 2002 年から 2015 年にかけては僅かに影響を受けたと回答する農家が多かったが、

2020 年については著しい干ばつの被害が認識されている。また、洪水に関しては 2002 年には上流域で

42％認識されており下流域の 33％を上回る結果となったが、2015年から 2020年に至る間は主に下流域で

認識されていた。 
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7章 まとめと提言 

本研究では、カンボジア国スツゥン サンカェ流域を研究対象として、2002年に JICAで、2015年にメコン

委員会で作成された高解像度の土地利用・被覆図に基づいて、2002 年から 2015 年における土地利用と

被覆の変化が水文特性と土壌侵食に与える影響について、SWAT モデルと RUSLE モデルを適用して評

価を試みた。その結果、2002年に 4％の面積を占めていた畑地は 2015年には 25％に増大し、2002年の

森林面積は 43％から 2015年には 30％に低下していた。 

SWAT モデルの適用に当たり、2002 年と 2015 年における土地利用と被覆から月間流量に基づいて不

確実性解析および較正や検証を行った結果、ダムの影響を除いた解析結果では決定係数（R2）は 0.64、

Nash-Sutcliffe モデル効率係数（NSE）は 0.62、バイアス率（PBIAS）は 15 で、ダムの影響下での解析結果

における決定係数（R2）は 0.58、Nash-Sutcliffeモデル効率係数（NSE）は 0.55、バイアス率（PBIAS）は 5で

あり、これらの結果から決定係数（R2）、Nash-Sutcliffe モデル効率係数（NSE）、バイアス率（PBIAS）ともに

基準値を超えており、一定の評価を与えられる結果となった。2002年から 2015年における土地利用と被覆

は有意に変化しており、本川における 2015年の平均最大流量は 2002年と比べて 0.8 m3/sの僅かな増大

が見られた。 

また、SWATモデルに基づいた 2015年の土壌侵食量は 22.1 t/ha/y で、2002年の 13.4 t/ha/yを有意に上

回っていた。同様に、RUSLE モデルで算出された 2015 年の年流亡土量は 14.4 t/ha/y で 2002 年の 4.6 

t/ha/y を大きく上回る結果となった。2 つのモデルに基づいた対象の小流域における計算結果は、2019 年

に公表された現地での実験結果とほぼ一致することを確認できた。 

2015 年の状況下で植林やアグロフォレストリーが適用された 3 つのシナリオ下で比較した結果、雨期に

おける河川流量は 2015年を基準に 1.4%、3.4% 、3.3%減少し、乾期には 2.9%、0.8%、0.4%増大する結果

となり、僅かではあるものの乾期には水資源の確保に繋がり、雨期には洪水や土壌保全に寄与していた。

一方、土壌侵食については植林面積率を 25％まで進めることで、顕著に土壌侵食の抑制効果が発現する

ことが明らかとなるものの、25％を超えての植林は抑制効果の向上が見込まれないため、推奨できないこと

が分かった。 

更に、スツゥン サンカェ流域における 200 戸の現地農家を対象として、土壌肥沃度の変化や洪水・干ば

つに対する認識調査を 2021 年に実施した結果、全体的には僅かにまたは著しく土壌肥沃度が低下したと

回答した農家が、上流域、下流域に関わらず目立ち、著しく土壌肥沃度が低下していると回答した上流域

の農家率は 18％で、下流域では 11％に昇った。 

 

上記のようにこの研究は、カンボジア国スツゥン サンカェ流域における土地利用と被覆の変化が水文特

性および土壌侵食に与える影響について扱ったものであるが、研究成果より面積率 25%を対象に植林や

アグロフォレストリー化（主に畑地のアグロフォレストリー化）を進め、現有森林面積と合わせて森林率 40％

を達成することにより、雨期における河川流量は 2015年を基準に 3.4%減少し、乾期には 0.8%増大する結

果となり、僅かではあるものの乾期には水資源の確保に繋がり、雨期には洪水や土壌保全に寄与すること

を示した。特に、土壌侵食については植林面積率を 25％まで進めて現有森林面積と合わせて森林率 40％
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を達成することで、顕著に土壌侵食の抑制効果が発現することを示した。現在、カンボジア政府は 2030 年

までの SDGs を達成するために、50％の森林率を回復する旨の方針を出しているものの、本研究の成果か

らは 50％に到達出来なくても、植林やアグロフォレストリー化で森林率 40％に至ることで十分に効果を発現

できる可能性を示すことができた。 
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CHAPTER 1 

Background and Objectives 

 

1.1. Background 

Land-use change has historically always occurred around the world, is ongoing, and is 

likely to continue in the future (Lambin et al., 2006). These changes have positive and 

negative impacts on human well-being and safety. The most common and widespread land 

use and land cover changes (LULCC) worldwide are deforestation, agricultural expansion, 

and urbanization (Song and Zhang, 2012). For instance, deforestation and agricultural 

intensification are pervasive that they accumulate globally and significantly affect key 

aspects of the Earth's systems (Zhao et al., 2006). In recent centuries, the impact of human 

activities on the land has grown enormously, altering landscapes and ultimately impacting 

the earth’s biodiversity, nutrient and hydrological cycles, and climate (Malhi et al., 2008; 

Searchinger et al., 2008; IPCC, 2007). The trend in LULC changes has been toward cash 

crop plantations due to various government policies, growing physical infrastructure, and 

social and economic development in multiple parts of mountainous areas in Southeast Asia. 

Forests have become the main focus for conversion to agricultural plantations (Carmona and 

Nahuelhual, 2012). 

Understanding the hydrological process associated with the LULC changes is vital for 

decision-makers in improving human well-being. The LULC changes significantly affect the 

landscape's hydrology caused by anthropogenic activities (Engida et al., 2021). The impacts 

of LULC changes on hydrology can be studied by hydrological modeling, statistical analysis, 

and experimental catchments’ comparative analysis (Elfert and Bormann, 2010). The LULC 

changes were a likely driver, among other factors, such as surface and groundwater 

abstractions for irrigated agriculture and the flow regulations due to dam construction. 

Another way of studying the LULC impacts is through a comparative assessment of the 

hydrological behavior of experimental catchments (Gebresamuel et al., 2010). This method 

has been rarely used due to the lack of such experimental catchments. Hydrological 

modeling applications for assessing the impacts of LULC changes on hydrology are the most 

widely used method, and several applications could be found in the literature (Birhanu et al., 

2019).  

In addition, it is widely recognized that land-use changes can greatly accelerate soil 

erosion (Hooke, 2000). It has long been known that erosion beyond soil production would 
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ultimately reduce agricultural potential (Pimentel and Burgess, 2013). Although soil fertility 

generally declines with accelerated erosion, soil fertility is a function of farming methods 

and site conditions such as soil type, nutrient, and organic matter content (Montgomery, 

2007). Soil erosion caused by human activities is reported to be 10–15 times higher than any 

natural process (Wilkinson and McElroy, 2007). Around 80% of the cultivated areas 

worldwide are exposed to high to severe erosion. The amount of generated sediments can 

increase waterways' turbidity and raise impurities' concentration (Tang et al., 2014). 

Furthermore, soil erosion and sediment yield can severely affect people and the 

environment if the quantity of sediment exceeds the value of typical measurements of aquatic 

organisms. LULC changes led to increased soil erosion on agricultural and bare lands. This 

highlights the need to plan and manage changes to LULC to reduce erosion to and below 

sustainable levels (Eskandari Damaneh et al., 2022). The quality and quantity of water 

resources are strongly related to land use and land cover patterns within a local catchment. 

Cambodia's water resource management challenges are unsustainable natural resource 

development, agricultural expansion, and forest loss associated with commercial timber 

exploitation (Kim Phat et al. 2001). A major concern is the conversion of forests to cropland 

(Sourn et al., 2021; Nut et al., 2021), which can lead to habitat disturbance, soil erosion (Nut 

et al., 2021), sedimentation, and other issues related to water availability and quality. 

The LULC changes and population growth are the most common problems in 

developing countries like Cambodia since their economic development mainly depends on 

agriculture. In recent decades, the increase in human activities led to the expansion of 

agricultural land, logging and urbanization, leading to deforestation in some parts of 

Cambodia (Kong et al., 2019), while these land cover changes affected the hydrological 

cycle and flooding of the local watershed, making various sub-watersheds more vulnerable 

(Garg et al., 2019). The modifications or transformations of natural vegetation and soil 

physical conditions usually cause changes in local catchment rainfall-runoff properties, 

which consequently alter river regimes (Shao et al., 2018; Zhang et al., 2017). Several studies 

show that the changes in vegetation cover, i.e., deforestation, lead to increased water yield 

and sedimentation (Sun et al., 2020; Vaighan et al., 2017). 

A wide range of empirical, conceptual, and physically-based models have been 

developed to analyze hydrological processes and estimate soil loss risks. These models differ 

in complexity, data requirements, consideration processes, and calibration (Marondedze and 

Schütt, 2020; Raza et al., 2021). Among the other models, SWAT (Arnold et al., 1998), 
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USLE/RUSLE, APEX (Williams et al., 1998), or WEPP (Laflen et al., 1991) models are the 

most popular, particularly the SWAT model. The SWAT model includes the statistical 

model of USLE (Wischmeier and Smith, 1978) and is derived from RUSLE (Renard et al., 

1997). However, the SWAT and the APEX can only mechanistically simulate a limited 

number of different best management practices (BMPs) scenarios individually (Saleh and 

Gallego, 2007). 

In Cambodia, land use has begun to change recently as both Cambodian and foreign 

investors invest in industrial crops such as palm oil, rubber, cassava, and kapok (Fox, 2002). 

These changes have been accompanied by expanding urban populations and the growth of 

huge megacities around the region, often at the expense of prime farmland. Without 

understanding the human dynamics behind land use change, we cannot understand changes 

in land cover nor predict the outcomes of policy intervention. It is vital to generate baseline 

data on the effects of commodification on local resource management systems to understand 

the impact of these changes on land cover, sustainable resource use, and landscape 

transformation (Nunes and Auge, 1999). For instance, as of mid-2012, 204,750 hectares 

ELCs have been granted to 118 companies (Chan, 2015). 

Consequently, the forest cover in Cambodia decreased remarkably from 59.64% in 

2006 to 45.26% in 2016 (MAFF, 2018). These changes have been accompanied by 

expanding urban populations and the growth of huge megacities around the region, often at 

the expense of prime farmland (Sourn et al., 2021). Furthermore, according to Diepart and 

Sem (2018), agricultural expansion and economic growth are the factors behind 

deforestation in Cambodia. It has been reported that the country's agricultural land expanded 

from 26% to 31% in 1997 and 2007 (FAO, 2010). Despite that growth, the forest cover in 

the northwestern uplands of Cambodia (some parts of Battambang and Pailin provinces) 

experienced a considerable decrease of 65% between 1976 and 2016. It was primarily 

converted from forest land to agricultural land for growing crops (Kong et al., 2019). 

 

1.2. Land Use Change and Forest Degradation in Cambodia 

Land use in Cambodia has undergone rapid changes, especially in the last decade, 

which can be attributed to development activities. In 2006, forest cover was estimated at 

59.9% of the country's total land area. However, this forest cover was reduced to 57.7% of 

the country's total land area in 2020 (MRC, 2016). While the forest cover decreases yearly, 

the agricultural area has increased. The rice acreage was reported to rise from 2.72 million 



4 

hectares in 2009 to 3.05 million hectares in 2013. The same trend applies to the rice acreage, 

the acreage of the other four main crops, namely corn, cassava, mung bean and soybean, 

increased from 206,058 to 239,748 ha, 160,326 to 421,375 ha, 49,599 to 54,312 ha and 

96,388 to 80,680 ha from 2009 to 2013. Among the four main crops, cassava appears to be 

a promising case income opportunity for the local community as the total land area has 

increased rapidly over the past three years. According to the Ministry of Environment (MoE) 

the forest cover of Cambodia declined from 73.04% in 1965 to 48.14% in 2016, compared 

to the overall country area, primarily caused by civil war, population increase, need of land 

for agricultural production, and other key factors. Based on the forest cover assessment, the 

country’s forest cover in 2016 was about 8,742,401 ha (48.14%), and the average annual 

loss rate from 2014 to 2016 was about 121,328 ha (0.67 %), compared to the entire country’s 

area (MoE, 2018). 

Land use in Cambodia began to change due to investment by insiders (Cambodian 

investors) and outsiders (foreign investors), mainly industrial crops such as palm oil (Elaeis 

guineensis), rubber (Hevea brasiliensis), cassava (Manihot esculenta), and kapok (Ceiba 

pentandra) (Fox, 2002). According to the FAO (2010), the agricultural area grew from 4,580 

to 5,455,000 ha from 1997 to 2007 (26 to 31% of the total land area). The rice (Oryza sativa) 

production area increased from 2.72 million ha in 2009 to 3.05 million ha in 2013. Similar 

to the upward trend of the rice production area, the production areas of the other four main 

crops, namely: maize (Zea mays), cassava, mung bean (Vigna radiata), and soybean 

(Glycine max), increased from 206,058 to 239,748 ha, 160,326 to 421,375 ha, 49,599 to 

54,312 ha, and 96,388 to 80,680 ha from 2009 to 2013, respectively (MRC, 2015), as cited 

in (Kityuttachai et al., 2016). According to the Ministry of Environment (MoE), Cambodia's 

forest area has decreased from 73.04% in 1965 to 48.14% in 2016 compared to the total 

country area (Figure 1.1). This was mainly caused by civil war, population growth, the need 

for land for agricultural production, and other key factors. Based on the forest cover 

assessment, the country's forest cover was about 8,742,401 ha (48.14%) in 2016, and the 

average annual loss rate from 2014 to 2016 was about 121,328 ha (0.67%) compared to the 

total Area of the country (MoE, 2018).  

A recent study by Lohani et al. (2020) reported that the primary forest loss in 

Cambodia from 1993 to 2017 was 17,150 km2, while in Tonle Sap, the total area of forest 

loss was low at 1,944 km2; however, when analyzed as a percentage of the total forest area 

of all study regions, this was the highest. A portion of forest land cover in the Tonle Sap was 
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lower as a whole (26 versus 53%) than for the Cambodia and 3S river (Srepok, Sesan, and 

Sekong) region. The rate of forest loss across the Tonle Sap region was relatively high and 

constant at 1.2% (Lohani et al., 2020). Forest loss in the Tonle Sap region seemed to occur 

over 25 years and mostly happened in small patches. After 2010, deforested areas have 

mingled into greater patches. In the western part of Cambodia, many large patches of forest 

loss are centered in highland regions, such as the Cardamom Mountains. In contrast, a 

concentrated forest loss occurred in the northwestern part of Cambodia along the border with 

Thailand in the early 2000s. It decreased only after nearly all remaining primary forests were 

lost (Lohani et al., 2020).  

Based on the finding of Nalin et al. (2010), in Tonle Sap Basin, from 1990 to 2009, 

forest cover decreased by 43% from 20,170 km2 to 11,436 km2, while agricultural land 

increased by 34% from 14,076 km2 to 18,858 km2. A recent finding by Kong et al. (2019) 

mentioned that the total forest coverage (dense and degraded forests) remained almost 

unchanged, accounting for about 90% of the area between 1976 and 1997. However, about 

13% of the dense forest area was transformed into degraded forestland. Forest cover was 

reduced dramatically during the following 20 years, from 1997 to 2016, and only 25% 

remained in 2016, especially along the main roads. Sixty-five (65%) percent of the forest 

cover loss primarily occurred between 2006 and 2016 (Kong et al., 2019). Based on the Land 

Degradation Neutrality Targets (LDNT) statement in Cambodia, the drivers of land 

degradation in Cambodia have mainly been attributed to deforestation, expanding 

agricultural lands, climate change, pests and diseases, unsustainable land management, and 

infrastructure development. In recent decades, deforestation has resulted in a significant loss 

of forest cover from 10.83 million ha (59.64%) in 2006 to 8.52 million ha (46.90%) in 2014 

to 10.45 million ha (57.55%) in 2010, to 8.52 million ha (46.90%) in 2014 and to 8.22 million 

ha (45.26 %) by 2016. Over that period, croplands (paddy rice fields, field crops, horticulture, 

rubber and oil palm) increased by about 2.69 million ha. Agricultural land is expanding from 

lowland to upland, adding more pressure on forestland. Land Productivity Dynamics (LPD) 

indicate that in 2010, Cambodia had about 53,000 ha of land, showing an early sign of 

decline in productivity, as land use changed from forest to cropland. The soil organic carbon 

density indicates that for a period of 10 years (2000-2010), Cambodia lost about 1.98 million 

tons of carbon in the top 0-30 cm depth due to land use changes from forest to non-forest 

(MAFF, 2018). Cambodia aims to achieve an economic growth rate of 7% per annum with 

its aspiration to reach an upper-middle income country by 2030 and is committed to attaining 
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zero-hunger by 2025. Agriculture continues to be a driver of economic growth and poverty 

reduction for Cambodia. Achieving sustainable agricultural development at 5% per annum 

is instrumental in addressing the objectives of the Royal Government of Cambodia (RGC) 

for food security, poverty reduction, and increased climate resilience (MAFF, 2018). Food 

production relies mainly on land and water. Land degradation and water scarcity are real 

challenges for food security. As one of the UNCCD (United Nations Convention to Combat 

Desertification) signatory States, the RGC has approved the National Action Plan (NAP) for 

2018 to 2027, a fundamental document for national strategies for combating land 

degradation in the country. The RGC is committed to achieving 17 Sustainable Development 

Goals (SDGs), including SDG15, which aims to protect, restore and pro-mote sustainable 

use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt 

and reverse land degradation and halt biodiversity loss. Target 15.3 clearly aims to combat 

desertification, restore degraded land and soil, including land affected by desertification, 

drought and floods, and strive to achieve a land degradation-neutral world by 2030 (MAFF, 

2018). 

Because of the boom of economic land concession, some forest areas have been converted 

to industrial crops and forest plantations such as acacia, eucalyptus, and teak plantations, as well 

as rubber plantations. The area for rubber plantations has increased from 129,920 ha in 2009 to 

328,771 ha in 2013. According to MAFF, till 2012, the RGC has granted Economic Land 

Concession to 118 companies with a total land area of 1,204,750 ha. Among these companies, 39 

companies were recorded to plant forest tree species. The total cultivated area of Cambodia is 

about 4.37 million ha (24% of the land), while forests cover about 56%. Rice is the dominant crop, 

which covers approximately 3.57 million ha (80% of agricultural land), including the receding 

area, floating rice, and paddy rice interspersed with villages (MRC, 2016).  

Cambodia has experienced rapid and extensive land use and land cover change over 

the last 20 years from 1990 to 2010; in particular, forest cover in Cambodia fell from 73 to 

57% of the total land area (12,944 to 10,094 thousand hectares). Over the same period, the 

forest area designated for conservation increased from 2,776 thousand to 3,985 thousand 

hectares (23% of the total land area and 39% of the forest area).   Available figures also show 

that between 1997 and 2007, Cambodia's agricultural land expanded from 4,580 to 5,455 

thousand hectares (26 to 31% of land area) (FAO, 2010).  The deforestation rate for the 

coming decades depends on many factors, such as: 1. Changes in market demand; 2. Changes 

in forestry management – forest concession policy; reforestation, monitoring, and control of 
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illegal logging and forest clearing; monitoring actual logging operations; improved data on 

the extent and composition of the forest; harmonizing regional policy and practice regarding 

control of illegal timber trade, and regional cooperation in capacity building, and exchange 

of information and best practices; and, 3. Changes in the spontaneous growth of the 

agricultural settlement.  Moreover, the LULC of north-east Cambodia has been changed due 

to agricultural enlargement; for instance, the forest cover has been converted into farmlands 

and paddy fields (Hor et al., 2014). Land use in mountain areas has rapidly transformed from 

native forests to cash crops, including rubber, acacia, cassava, sugarcane, jatropha, and other 

crops through economic land concessions (ELC) (ELC, 2015). 

 

Sources: Ministry of Environment (2018) 

Figure 1.1. Rate of forest cover change statistics from 1965-2016 

 

1.3. Factors of Land Use Change in Cambodia 

Several factors lead to forest degradation in Cambodia, as follows: 

For Economic Land Concession (ELC): Cambodia's mountainous, forested areas 

have been transformed into agricultural land through economic land concessions (ELC). The 

ELC is the long-term (usually 70 to 90 years) granting the state-owned land to private sector 

operations for economic development through agricultural and industrial–agricultural 

operations, including large-scale plantations, stock rearing, and factory construction (Neef 

et al., 2013). A total land area of 1,204,750 hectares of ELC was granted to 118 companies, 
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according to the report of the Ministry of Agriculture, Forestry, and Fishery (MAFF) of 

Cambodia (Kozak Dehlin, 2015). The ELCs granted in Cambodia which it was initially 

started to give to recipients in 1995 before specific laws and regulations had been in place 

because Land Law was just adopted in 2001, and a Sub-Degree on ELC was just also in 

place in 2005—a total of 6 ELCs before 2001 and 11 ELCs before 2005. Thus, offering 

ELCs without legal binding support and explicit instruction was unusual practices and 

strange. After adoption, it gradually increased to 14 ELCs only in 2006, while this trend 

continually increased to 43 ELCs in 2011 (Figure 1.2). 

 

 

Sources: Open Development Cambodia (2019) 

Figure 1.2. Map of Economic Land Concession (ELC) in Cambodia 

 

For Directive 01 (D-01): Directive 01 (D-01) aims to reinforce and increase the 

efficiency of land management, with an emphasis on reducing land conflicts and providing 

titles to incumbent landholders. This was launched on July 1, 2012, by the Prime Minister. 

The policy aimed to systematically issue private land titles for 1.2 million hectares of land 

covering 350,000 families living within ELCs' forest concessions or state-owned land. To 

implement this initiative, thousands of student volunteers were recruited and provided basic 
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training before being sent to the provinces to assist land titling offices and departments 

(Yeang, 2013). 

For Market Demand Fluctuation for Crop: Commonly, Cambodia’s agriculture 

sector has been undergone significant structural transformation decades ago and 

technological equipment have been integrated and used widely. Furthermore, the sector was 

still considered to play a major role; but it has become relatively less important in overall 

GDP year-by-year; for instance, in the period 2004-12, annual growth in gross production 

was 8.7 percent; while agricultural GDP grew by an annual average of 5.3 percent during 

the same period (Eliste and Zorya, 2015).  It also emphasized that in many cases, farmers 

who expanded their land areas received higher incomes, but farmers with unchanged land 

areas were unable to substantially increase their incomes. The period of relatively high food 

prices was largely used to expand land areas rather than to build a strong foundation through 

productivity increases. Even poverty reduced significantly in period of last 10 years, but the 

number of vulnerable people also increased significantly since, most people who escaped 

poverty did so only by a small margin. The high rate of vulnerability was a sign of still 

modest agricultural productivity increases.  

For Climate Change Causes Cropping Behavior and Land Use Change: Generally, 

local people have been considerably done farming in traditional ways; including a study by 

Hak, et al. (2015) at two IDs communes found that even increasing market activities and 

diminished natural resources, where most IPs were still huge relied on forest resources and 

they have still less produced the need products and not transforming them into traders nor 

provided it as sustained income yet. The study by Hak, et al. (2015) for specific in two 

communes—Dak Dam and Srae Preah; experienced a transition in agricultural production 

from the cultivation of upland staple crops, mainly for subsistence, to the production of cash 

crops for the market. As income shares from the cultivation of crops increased, those from 

forest products, hunting, and trapping decreased. Economic growth gave rise to land 

concentration and high-income inequality among households. Furthermore, Cambodia has 

frequently suffered catastrophic damage from natural disasters, notably drought, flood, storm, 

and after-effects, particularly in the many rice-producing provinces. Most rural poor rely on 

the regularity of the wet and dry seasons, especially for crop farming, which affects all 

aspects of their lives, from income generation, consumption, nutritional status, education, 

and health. Natural disasters especially hard hit the agricultural sector; not only crops, but 

infrastructure, buildings and equipment are destroyed. Given that the agricultural sector is a 
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key contributor to the national economy, the impact of natural disasters reverberates beyond 

its confines (Ros, Nang and Chhim, 2011).  

For Immigrant: Cambodian migration is mostly internal according to the National 

Institute of Statistics of Cambodia, and it was up to 35 percent of the Cambodian population 

migrated. Likewise, young people (aged 15-25) form a large section of migrants—30 percent. 

The challenge of rural is that new families cannot acquire or access land in their village. 

Therefore they out-migrate in search of livelihoods (Maltoni, 2005) and the current ELC and 

globalization. While, in Cambodia, about half of rural out-migration was to only Phnom 

Penh through the finding in 2012 (ADB, 2014); the garment factory sector along was 

accountable for up to 650,000 workers; since the majority of factories are located in urban 

cities and surrounding outskirts. 

 

1.4. Impacts of LULC Change on Water Resources and Hydrology 

1.4.1. LULC Change Impacts on Water Resources   

The LULC change is considered one of the main factors directly affecting the 

hydrological cycle of the watershed (Engida et al., 2021; Gashaw et al., 2018) and directly 

affecting ecosystems and related services, especially water yield (Li et al., 2018). The main 

drivers of LULC changes are directly related to human activities such as population growth, 

socioeconomic development, population growth, land pressure for agriculture, foreign 

investment in agriculture, favorable biophysical factors, politics, and globalization (Lambin 

et al., 2003; Marchant et al., 2018; Kleemann et al., 2017; Msofe et al., 2019). Natural 

processes such as landslides, floods, droughts, and climate change affect the LULC change 

(Brink and Eva, 2009), although they are induced to some extent by anthropogenic activities. 

These conversions to cropland have negative impacts on multiple ecosystem services such 

as water quantity and quality (Mustard et al., 2004), and catchment water resources are a 

trade-off for increased agricultural yields such as food and timber production (Mustard et al., 

2004; Brink et al. Eva, 2009). Hence, scientific guidance is needed to enable the sustainable 

development of the catchment (Leemhuis et al. 2017; Meijer et al. 2018). Land use change 

is also affecting climate change through vegetation clearance and changes in carbon storage 

and sequestration (Lambin et al., 2003), and its impact might be more severe than those of 

climate change in some regions with already extremely dry climate. Consequently, studies 

on the impacts of land use change on catchment water resources address a significant 

research concern in this century (Wagner et al., 2017). 
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Therefore, food production depends on water resources, and any likely impacts of 

LULC changes on water resources will negatively impact food production. Several water-

related goals of the Sustainable Development Goals (SDGs) are at risk from land conversion 

to cropland, particularly regarding SDG 6 (Clean Water and Sanitation) and SDG 15 (Life 

on Land) (Meijer et al., 2018; Nhemachena et al., 2018). Several studies have examined the 

impacts of LULC changes and climate change on water resources separately (Faramarzi et 

al., 2013; Yira et al., 2016) or simultaneously (Notter et al., 2013; Op et al., 2019). The 

results of the studies differ for several reasons, e.g., the type of LULC changes, the regional 

focus, or the chosen period and model for simulating climate change.  

Although there are numerous studies on the effects of LULC changes on watershed 

hydrology, the evidence from the different studies is still conflicting. Malmer et al. (2009) 

argue that the general notion that the fundamentals of forest and water relationships are well-

known does not apply to watersheds with fragmented and dynamic land-use patterns, such 

as those observed in the tropical developing world. This means that the variation in 

catchment characteristics associated with LULC changes increases the uncertainty of finding 

commonality in observed hydrological signatures attributed to LULC changes. It is 

commonly argued that forests act both as pumps through increased evapotranspiration (ET) 

rates and as sponges through increased rates of infiltration and soil moisture retention 

(Bruijnzeel, 2004; Arancibia, 2013). Forested watersheds have lower runoff rates than those 

dominated by other managed land uses. Loss of forest cover leads to changes in albedo, a 

reduction in aerodynamic roughness, a decrease in leaf area, and a reduction in root depth, 

which consequently leads to a decrease in ET, which subsequently affects current flow 

(Costa et al., 2003; Farley et al., 2005). The net effect of forest loss is increased water yield 

(Bosch and Hewlett, 1982). In addition, a reduction in dry season flow because of 

deforestation is often cited (Ogden et al., 2013; Arancibia, 2013; Liu et al., 2015). Despite 

these general conclusions, based on experimentation at different spatial scales (e.g., property, 

watershed, and regional scales), empirical and physical-based (pooled and spatially 

distributed) modeling, and time-series analysis, they isolate the impacts of LULC changes 

on water resources in a landscape are problematic because uncertain interactions of factors 

drive these effects. Eshleman (2004) found that these increases in water yield associated with 

forest loss depend on several factors, including the method of forest loss (Beschta, 1998), 

the extent of forest clearing (Bosch and Hewlett, 1982), and the rate of plant regeneration 

affecting ET (Federer and Lash, 1978), climatic conditions (Bosch and Hewlett, 1982; 
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Whitehead and Robinson, 1993), and hydrogeology and physical properties of the catchment 

(Likens et al., 1978). 

Previous studies have demonstrated that patterns of land use change, as well as the 

representation of these patterns in models, significantly affect predictions of catchment water 

quantity and quality (e.g. Wagner et al., 2017). Wagner et al. (2017) suggested that the static 

approach, with constant land use over time, can result in good streamflow predictions when 

land use development is linear, while land use change is approximated more realistically by 

means of a dynamic representation for non-linear land use changes (Chiang et al., 2010). 

The question arises of how the difference in land use change representations may affect 

water quality prediction in catchments. Furthermore, the study of Garg et al. (2019) showed 

that the water supply and hydrological process decreased because of LULC change, 

exacerbated by significantly increasing population pressure and development in the Pennar 

Basin of India. This can be done by increasing the water yield or reducing the flow, thereby 

increasing the sediment load and groundwater (Babar and Ramesh, 2015; FAO, 2014). 

Therefore, maintaining the balance of native forest covers around the world is crucial 

because native vegetation distribution is the main factor that affects the variation of annual 

runoff on both national and global scales (Peel et al., 2001). It is well understood by many 

studies that decreasing forest cover would lead to increasing water yield (Brown et al., 2005). 

Still, it would be essential to look at the impact of forest cover on other aspects of hydrology, such 

as evapotranspiration,  groundwater recharge,  soil water content, and flooding. 

 

1.4.2. LULC Changes Impact on Streamflow 

Agricultural and urban expansion is a common and widespread LULC change 

worldwide (Hosonuma et al., 2012). LULC changes are among the most critical input data 

for a hydrological model. LULC changes can have significant impacts on watershed 

hydrology (Sadhwani et al., 2022), surface water availability, base flows (Das et al., 2018), 

ET (Das et al., 2018), runoff (Das et al., 2018; Farley et al.,  2005),  sediment yield (Sadhwani 

et al., 2022), and groundwater (Siddik et al., 2022) in the catchment. Many studies across 

the globe have shown that LULC changes significantly impact hydrological processes (Khoi 

and Suetsugi, 2014). Studies and reviews on the impact of land use change –particularly 

forest cover change-upon hydrologic processes have been done at the regional and global 

scales (Bradshaw et al., 2007; Brown et al., 2005; Farley et al., 2005). Brown et al. (2005) 

reviewed paired catchment studies on the impact of forest cover changes on water yield at 
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different temporal scales; they reported that expansion of forest cover could reduce water 

yield.  Likewise, Bruijnzeel (2004) reviewed various research studies on the hydrological 

functions of tropical forests in southeast Asia and reported that the water yield increased 

with decreasing forest cover. Farley et al. (2005) also found that runoff reduced as afforest 

based on the 26 catchments dataset globally. While removing vegetation can lead to more 

acute flood impacts within the denuded catchments, increasing forest cover often results in 

decreasing runoff rates (Calder, 2007).  For example, Vertessy et al. (1998) found that a rise 

or fall in water yield positively correlates with the percentage of forested areas in the basin 

based on their research on 17 catchments in Australia. Wang et al. (2008) also concluded 

that mean annual runoff declined by 2.3% followed by increasing of 25% in the proportion 

of forestland in a mountainous catchment in China.  Similarly, Khoi and Suetsugi (2014) 

discovered a rise of streamflow, from 0.2% to 0.4% with a decline of 16.3% in forestland in 

the Be River catchment, Vietnam. Consequently, LULC changes are responsible for the 

increased runoff of rivers across the globe (Piao et al., 2007). Besides, different forest cover 

types could result in various water yield. For instance, Bosh and Hewlett (1982) discovered 

that a 10% change in forest cover types, particularly Pine and Eucalypt, deciduous hardwood 

and scrub alter the water yield on average 40 mm, ∼25 mm and 10 mm respectively.  

Therefore, maintaining the balance of native forest covers around the world is crucial 

because native vegetation distribution is the main factor that affects the variation of annual 

runoff in both national and global scales (Peel et al., 2001). It well understood by many 

studies that decreasing forest cover would lead to increasing water yield (Brown et al., 2005), 

but it would be important to look at the impact of forest cover on other aspects of hydrology 

such as evapotranspiration, groundwater recharge, soil  water content and flooding. 

 

1.4.3. Contribution of LULC Change to Precipitation 

Forest cover can positively affect water cycles and improve water availability (Ellison 

et al., 2017). Conversely, deforestation led to reductions in the amount of precipitation. 

According to Van der Ent et al. (2010), evapotranspiration (ET) has contributed significantly 

to at least 40% of rainfall on Earth, and the Amazon Forest contributes more than 70% of 

precipitation for the Rio de Plata River basin. Transpiration contributes a significant share 

of the amount of ET in the atmosphere (Schlesinger and Jasechko, 2014). Kummu (2003) 

studied the natural environment and historical water management in the Siem Reap basin.  

He discovered a high rainfall distribution at the Kulen Mountain range with an average of 
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1,854 mm/year, which is higher than the annual average of the other two stations (Siem Reap 

and Banteay Srie stations), at 1,317 mm. This result indicated that the high density of forest 

cover along the Mount Kulen range has potentially contributed to increasing amounts of 

precipitation. Agricultural expansion through deforestation affects local temperature, 

reduces ET, and alters the rainfall and water availability in the catchment (Ellison et al., 

2017). Lawrence and Vandecar (2015) and Oliveira et al. (2013) studied the effects of 

tropical deforestation on climate and agriculture. They found that expanding agriculture in 

the Amazon leads to declining precipitation and low agricultural productivity. 

Moreover, forest cover is a carbon storage place, thus cooling surface temperature 

(Ellison et al., 2017) in the catchment. Rising mean annual temperatures affect the balance 

between ET and runoff and the water yield (Balist et al., 2022; Hu et al., 2005; Schmid et 

al., 2000). Hence, forest cover helps maintain the local precipitation and cope with future 

climate change in this catchment. 

Likewise, Lu et al. (2015) found that forested land contributed more to water yield 

than any other LULC class. Still, built-up land had the most significant impact due to low 

initial losses and infiltration. At the basin scale, there were slight increases in average annual 

potential ET, actual ET, and water yield (WY), but soil water decreased between the two 

intervals. Moreover, Dibaba et al. (2020) also highlighted that the changes in LULC increase 

surface runoff and water yield and a decline in groundwater. The projected climate change 

shows decreased surface runoff, groundwater, and groundwater water yield. The combined 

study of LULC and climate change shows that the effect of the combined scenario is similar 

to that of the climate change-only scenario. 

Furthermore, Saddique et al. (2020) reported that afforestation had reduced the WY 

and surface runoff at the catchment scale while enhancing the ET. Moreover, this change 

was more pronounced at the sub-basin scale. Some sub-basins, particularly in the northern 

part of the study area, showed an increase in the WY due to the rise in the snow cover area. 

Likewise, extreme land use scenarios also showed a significant impact on components of the 

water balance. The basin WY has decreased by 38 mm/year, and ET has increased by about 

36 mm/year. 

 

1.4.4. Contribution of LULC Changes to Groundwater 

The forest cover is also contributed to increasing groundwater recharge and improving 

groundwater resources. Ilstedt et al. (2016) investigated groundwater recharge in the 
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seasonally dry tropics, and they found that tree cover can increase groundwater recharge. 

Likewise, Neary et al. (2009) studied linkages between forest soils and water quality and 

quantity. They found that forest cover also improved the quality of groundwater and surface 

water in its catchment. Root systems of the forests are extensive and relatively deep 

compared to agricultural lands and grasslands, and it commonly plays a crucial role in 

improving soil conditions and groundwater through infiltration rate and percolation below 

their rooting zone. 

Moreover, forest cover plays a crucial role in maintaining the available water storage 

capacity in the soil (Brown et al., 2005). While it is essential to understand the streamflow, 

evapotranspiration, and groundwater responses under forest cover, these might not reveal 

the whole story since the water stored in soil interactions also plays a vital role in water 

balance under the influence of forest cover (Brown et al., 2005). Besides the above-

mentioned advantages, the forest cover prevents and reduces flooding (Allen and Chapman, 

2001; Bradshaw et al., 2007); while removing vegetation can result in more acute flood 

impacts within the denuded catchment areas, increasing forest cover often reduces runoff 

rates (Calder and Aylward, 2006). Bradshaw et al. (2007) studied the flood risk responses under 

forest cover change using observation data for a decade (1990-2000) of data from 56 

countries around the world. They found that the forest cover can increase interception and 

evapotranspiration and lead to reducing flood-related catastrophes. Floods are tropical 

countries' most common natural disaster (Tan-Soo et al., 2016). For instance, a flood in the 

Johor River basin, Malaysia, at the end of 2006 and early 2007, caused 18 deaths and the 

evacuation of more than 100,000 residents, costing USD 0.5 billion (Kia et al., 2012; Tan et 

al., 2015).  Therefore, integrating forest cover for flood management and mitigation is a 

potential and cost-effective solution (Ellison et al., 2017; Jongman et al., 2015) for river 

management and development. 

 

1.5. Research Conceptual Framework 

 The research implementation involves many processes, which consist of several steps 

to achieve the research objectives. Firstly, the research focuses on analyzing the impacts of 

LULC changes on streamflow and water balance in one catchment of Tonle Sap Basin, 

namely Stung Sangkae River catchment, which covers some parts of the Battambang 

province. This could be done by integrating the national LULC maps developed by Japan 

International Cooperation Agency (JICA) in 2002 and the Mekong River Commission 
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(MRC) in 2015 into the SWAT model to evaluate the hydrology changes and soil erosion 

from 2002 to 2015. Secondly, the research would further investigate the soil erosion in the 

catchment in 2002 and 2015 by integrating GIS with the RUSLE model (Figure 1.3). The 

result of soil erosion from the integration of GIS and RUSLE would also be used to compare 

and discuss with the outcome of SWAT model as well as comparing with the observed field. 

After that, the effective countermeasures to prevent increased streamflow and soil erosion 

through reforestation will be made by SWAT model. Furthermore, the field survey will also 

conduct to understand the perception of farmers towards hydrology changes and soil erosion 

as well reflect the results of the model with the farmer perception. Thus, to accomplish the 

research, SWAT, RUSLE, and GIS were applied with the support of field surveys, desk 

reviews, and discussions with relevant stakeholders. It was ensured that the collected data 

would meet the objectives through the careful set of data analysis and interpretation. 

 

Figure 1.3. Flowchart of the applied methodology in the research 

  

1.6. Research Benefits 

 The research would contribute to the development of LULC changes in Cambodia due 

to the trend of economic development and its impacts. It will play a vital role in establishing 

a land use database, which will benefit to various stakeholders while contributing to the 

improvement of national and sub-national understanding of researchers and relevant 

stakeholders on land use change database as well as contributing to government 

policymakers, a technical team of the Ministry of Agriculture, Forestry and Fisheries, 
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Ministry of Land Management, Urban Planning and Construction and Ministry of 

Environment having a baseline study to develop agricultural zoning map or spatial planning 

in the catchment scale. Besides these, it will facilitate the establishment of a sustainable 

water resources development policy for the region, and it is essential for (i) the assessment 

of water yield potential, (ii) the planning of soil and water conservation measures, and (iii) 

reducing the sedimentation and flooding hazard at downstream. In addition, the results of 

this study are expected to provide helpful information that can promote soil erosion 

management practices in the Stung Sangkae Catchment, Battambang Province, as well as 

Tonle Sap Great Lake, which represents one of the world’s most productive ecosystems and 

biodiversity. The Tonle Sap River-Great Lake system underpins the world’s biggest 

freshwater fishery and directly or indirectly affords a livelihood for most of Cambodia’s 

population.  

   

1.7. Scope and Limitations of the Research 

The study on hydrological characteristics and soil erosion affected by the LULC 

changes were carried out in one of the tributaries of Tonle Sap Lake, namely Stung Sangkae 

River catchment. A questionnaire survey was conducted with 200 households (HHs) in 2021 

in 4 districts along Stung Sangkae River (100 HHs for upstream and 100 HHs for 

downstream of the catchment). All relevant information from the locations, particularly 

people’s perspectives on hydrological changes and soil erosion occurrence, was collected. 

Moreover, the study analyzed the impacts of LULC on the hydrological process and soil 

erosion loss based on national LULC maps of JICA 2002 and MRC 2015, which would be 

done only in the Stung Sangkae catchment by using the SWAT and RUSLE model. However, 

the SWAT simulation would be done for a whole catchment which includes an ungauging 

part to understand the hydrological responses downstream. In contrast, model calibration 

and validation would be done only from the gauging station to the upstream part. There are 

5 rainfall stations (2007-2018) and stream flow (2000-2018) available for the model 

calibration and validation. As there is no sediment record available in the catchment, the 

output of soil loss from RUSLE would be used to discuss and compare with the SWAT 

model’s results to identify how the hydrology would be changed due to LULC changes in 

the catchment.  
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1.8. Research Objectives 

The overall objective is to investigate the hydrological characteristic and soil erosion in 

Stung Sangkae catchment based on the LULC changes. To achieve overall objective, the 

following objectives are set below: 

1). To identify the change of LULC and its hydrological responses in the catchment 

based on national LULC maps of JICA 2002 and MRC 2015 by SWAT model 

2). To estimate soil erosion risk in the catchment based on national LULC maps of 

JICA 2002 and MRC 2015 by the RUSLE model 

3). To investigate the effect of reforestation or agroforestry on hydrological responses 

in Stung Sangkae Catchment by SWAT Model 

4). To deepen the public perception of the importance of conservation strategies 

against flood/drought and soil loss. 
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CHAPTER 2 

Research Site Description 
  

2.1. Stung Sangkae River Catment in Battambang Province 

Battambang is part of the greater natural landscape of the Cardamom region (Figure 

2.1 and 2.2). The natural habitats of this region form a complex network of interconnected 

landscapes and watersheds that provide important ecosystem services to the region (Killeen 

2012). Sangkae River is one of the key water sources for the foundation of city development 

in Battambang. It originates from the range of the Elephant and Cardamom Mountains at an 

elevation of about 1,391-meter sea level (msl), flows from the southwest to North across 

Battambang Town and joins the Stung Mongkol Borey River at Bac Prea village about 40 

kilometers downstream from Battambang Town, and the Stung Sreng River at another 

further 10 kilometers downstream. It then flows into the Tonle Sap Great Lake. The upper 

Stung Sangkae River combines two rivers: the Stung Sangkae and the Stung Chamlang Kuoy 

(CNMC, 2012). At O Dambang, located about five kilometers upstream from Battambang 

Town, the river splits into the Sangkae and the Stung Chas Rivers, then flows directly into 

the Tonle Sap Great Lake.  

Battambang Province is approximately 11,803 km², and comprises 13 districts, one 

municipality, 96 communes and 741 villages. In 2005, the total population was 952,306 

(185,868 families). By 2008, it had increased to 1,025,174 with 205,351 families, while in 

2019 the total population had dramatically declined to 987,400 with 218,584 households 

(NIS, 2019) due to the migration to work abroad. According to the Report of Annual General 

Meeting 2018, Ministry of Labour and Vocational Training, the total of migrants working 

abroad amounted to 1,235,993, in which Thailand: 1,146,685, Republic of Korea: 49,099, 

Japan: 9,195, Malaysia: 30,113, Singapore: 831, Hong Kong: 54 and Saudi Arabia: 16.  

The Sangkae River (or Stung Sangkae in the Khmer language) is one of the main rivers 

in Battambang province. It is approximately 250 kilometers long and flows through 27 

communes of 6 districts in Battambang before draining into the Tonle Sap Great Lake. The 

river's average depth is 2.35 meters and 6.79 meters in dry and wet seasons, respectively 

(PDOWRAM, 2013). It provides primary water sources to feed into the minor irrigation 

system, mainly to irrigate dry-season rice. The Sangkae River delivers a pathway for fish to 

migrate from the Tonle Sap Lake (TSL) to flooded forests, open fields, and other river 
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channel networks in the wet season. Thus, the Sangkae River is a great fishing ground for 

local people in Battambang province (Try et al., 2015). 

Moreover, it is recognized by the Royal Government of Cambodia (RGC) as an 

important area for agricultural investment and development. A number of stakeholders have 

invested in developing land and water resources at Stung Sangkae, including local farmers, 

donors, national and local government agencies, and business communities. Agricultural 

production, especially paddy rice production, was expanded and intensified considerably. 

As a result, the catchment has experienced intense land use and land cover change (LULC), 

particularly in the last 20 years. With the increase in forest use and other unsustainable land 

use practices, an examination of the changing patterns of LULC is needed. The geographical 

context of the Sangkae River catchment is considered to be the province in which flooding 

has the second highest impact on agriculture, while Prey veng province is considered as the 

most vulnerable province in Cambodia (RGC, 2006). The site at Prek Toal, which is a 

floodplain of Sangkae River connected to TSL, consists of forest and floodplain areas that 

are seasonally submerged, and which are managed for fishing located on either side of the 

Stung Sangkae, which empties into the Tonle Sap Lake. These are highly productive areas 

of flooded forest and floodplain that contain areas highly important to migratory birds and 

that have importance for fish conservation such as the Prek Toal Core Area (e.g. Davidson, 

2006; Goes, 2005). 

The Stung Sangker River catchment has a total area of 6,052 km², and more than one 

third of this catchment area is within an elevation from four to 13 meters and is 1,391 meters 

at the highest point. The catchment at Battambang town gauging station is 3,230 km² 

(CNMC, 2012). The province is situated in the northwest part of Cambodia about 300 

kilometers from Phnom Penh via National Road No. 5. The province borders Beanteay 

Meanchey, Siem Reap, and Pursat Province. The enclave of Pailin Province and the national 

border with Thailand frames the western boundary. At its eastern tip, the province is 

connected to Tonle Sap Lake.  
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Figure 2.1. Location of the study area 

 

  
Figure 2.2. Land use of the study area 



37 

LULC changes could affect not only on the environment but also on local people 

consequently. Bürgi et al. (2004) and Wu and Hobbs (2002) indicate that changes in land 

use are the primary cause of various environmental issues such as soil erosion and water 

quality. Moreover, the research shows the water quality decline is caused by nitrogen loading 

increases, resulting in fertilizer use in the expansion of agricultural lands (Mattikalli and 

Richards, 1996). In developing countries, LULC changes may influence on socioeconomics 

or local environment (microclimate).  

In Cambodia, forest cover has declined dramatically in the last few decades, while 

agricultural production, especially the cultivation of paddy rice, was expanded and 

intensified considerably. For instance, the Stung Sangkae catchment has experienced 

intensive land use and land cover change (LULC), particularly in the last 20 years. With the 

increase in forest use and other unsustainable land use practices, an examination of the 

changing patterns of LULC is required. Moreover, the research on hydrological responses 

and soil erosion loss caused by LULC changes is limited, particularly in the Stung Sangkae 

catchment, where there is little research on soil erosion reported to date. Most soil erosion, 

sediment and hydrological studies with SWAT model or other applications were conducted 

at a large river basin scale such as Tonle Sap River Basin, Lower Mekong Basin (LMB) and 

Mekong River Basin (MRB). Moreover, there are no specific soil erosion rates that have 

been investigated in sub-catchments of Tonle Sap Lake (TSL), particular in Stung Sangkae 

catchment in term of spatial distribution of soil erosion losses in each individual TSL’s sub-

catchment. Furthermore, the geographic context of the Stung Sangkae River catchment is 

the province where flooding has the second greatest impact on agriculture in Cambodia after 

Prey Veng province which is considered to be the most vulnerable province (RGC, 2006). 

Aside from these, while climate change is causing climate variability in some parts of the 

world, particularly rainfall patterns, this will intensify and exacerbate soil erosion and lead 

to drought problems in some regions, particularly areas where land use change is occurring.  

This is a new research in Cambodia in terms of using the RUSLE model to estimate 

soil erosion loss in the catchment scale based on the changes of LULC. 

 

2.2.  Resource stresses exacerbated by climate change 

There are three protected areas associated with the Sangker River system 

(Sometimes known as the Battambang River Basin). These partly encompass: Phnom 
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Samkos Wildlife Sanctuary, Sam Lout Multiple Use Area, and Tonle Sap Multiple Use 

Area, totalling 710,000 ha. These areas are characterized below (Table 2.1): 

 

Table 2.1. Protected areas in Battambang 

Protected 

area 

Provinces Total area 

(ha) 

Area in 

basin 

(ha, %) 

Some uniques characteristics 

Phnom 

Samkos 

Wildlife 

Sanctuary 

Crosses 

Battambang 

and Pursat 

Province 

333,750 62,700 

(10.8%) 

High altitude areas with a 

wide diversity of forest 

types.  

Supports a range of 

threatened birds in the area. 

Samlaut 

Multiple 

Use Areas 

Crosses 

Battambang 

and Pursat 

Province 

60,000 44,900 

(74.8%) 

An evergreen forest area 

within the watershed of the 

Sangke River. It has been 

degraded by mining, causing 

severe erosion and increased 

sedimentation of the river, 

which flows into the Tonle 

Sap Lake. 

Tonle Sap 

Biosphere 

Multiple 

Use Areas 

Battambang 

(Aek Pnhom 

and Sangkae 

district) 

316,250 81,900 

(25.9%) 

Long-standing fish reserve; 

Great biological, 

hydrological, and 

cultural/economic 

importance. 

Source: Japan International Cooperation Agency, Ministry of Water Resource and Meteorology, Ministry of 

Agriculture, Forestry and Fisheries (2007) 

 

Both Phnom Samkos and Samlaut are located upstream of most irrigation systems; 

therefore, there would be no adverse environmental impact through irrigation promotion in 

this basin. On the other hand, Tonle Sap Biosphere Multiple Use Area is situated 

downstream of Sangkae River and it will be affected by water infrastructure development 

such as irrigation schemes and the increased usage in fertilizer and pesticides. Attention 

needs to be paid so as to refrain from negatively impacting downstream areas through 

irrigation (JICA, MOWRAM, and MAFF 2007). The Tonle Sap Biosphere Multiple Use 

Area is biologically diverse, with over 110 species of fish present. It is home to 11 globally 

threatened bird species and four near-threatened species such as the Spot-billed Pelican, 

Greater Adjutant, Bengal Florican, and Oriental Darter, and also supports important 

populations of reptiles such as Siamese Crocodiles. The planned rehabilitation of existing 
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irrigation schemes located upstream of Tonle Sap Lake does not appear to cause any 

additional negative impact on the environment. However, if there is an expansion beyond 

existing schemes, then the environmental monitoring plan must be considered as one of the 

project components in order to minimize future negative impacts on Tonle Sap Areas (JICA, 

MOWRAM, and MAFF 2007). The land classification is shown in Table 2.2. 

 

Table 2.2. Land classification by each district, 2009 

District 
Total area 

(ha) 

Forest land area (ha) 
Cultivation 

area (ha) 

Construction 

area (ha) 

Other  

area (ha) 
Total Flooded 

forest area 

Banan 79,600 33,443 - 32,171 12,843 1,143 

Thmar Koul  81,700 15,400 15,400 60,100 3,540 1,660 

Battambang 11,544 - - 8,558 8,558 117 

Bavel 92,300 17,471 601 49,293 4,541 20,995 

Ek Phnom 63,500 46,940 46,940 13,700 2,860 - 

Moung Russei 124,995 28,319 28,319 73,965 6,696 16,015 

Rotanak Mondul 79,200 25,520 - 46,400 3,780 3,500 

Sangkae 83,00 35,200 35,200 40,017 7,763 20 

Samlaut 180,300 80,181 - 5,520 6,410 38,509 

Sampov Luon 51,900 9,100 - 36,396 450 5,954 

Phnom Proek 70,400 8,276 - 32,397 2,602 27,125 

Kam Rieng 56,600 5,821 - 47,009 2,100 1,670 

Koas Kralor 105,000 30,000 - 60,000 15,000 - 

Rukh Kiri 57,688 10,805 - 41,291 5,592 - 

Total 1,137,727 246,476 126,460 596,497 78,047 116,708 

Source: National Committee for Democratic Development and Decentralization (NCDD), Battambang 

Provincial Data Book 2009 

 

2.3. Resource stresses and trends  

More natural forest areas, in particular from protected areas, are being granted to or 

taken by local communities or businessmen for large-scale agricultural development. Since 

2005, people have cleared forested areas to cultivate maize and/or cassava to market to 

private factories. Most of such products are exported to Thailand. Newly cleared land 

requires limited amounts of fertilizer, but later on more and more fertilizer will be used as 

the land productivity, watershed, and water resources degrade if no countermeasures are taken.  

Currently, an estimated 191,492 ha of forest cover is left, of which 150,992 ha is under 

the forestry administration’s management and 40,000 ha is under the provincial department 

of the environment. However, protected areas are increasingly under threat from land 
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encroachment for large-scale agricultural land development (Provincial Development of 

Planning, 2015).  

Key informants from the provincial department of agriculture reveal that the area under 

agricultural land will increase to 500,000 ha from 2015 to 2018, of which 100,000 ha will 

be dry season rice cultivation as well as upland rice crop. This trend for commercial cash 

crop production is likely to encroach significantly on both protected areas and recession 

flooded forest areas (Interview with deputy director, provincial department of environment, 

dated 22 December 2014).  

Interviews with officials from the provincial department of environment also confirm 

the significant loss of protected areas, including:  

• Samkos Wildlife Sanctuary: 14,000 ha of land has been taken from these protected 

areas, of which 8,000 ha was provided to local community members with legal title while 

the land title to an additional 6,000 ha was in a process of being issued to farmers.  

• Roneam Dounsar Wildlife Sanctuary: Covers an area of more than 170,000 ha in two 

provinces: Banteay Meanchey and Battambang (70,000 to 80,000 ha). Now there are only 

around 3,000 to 4,000 ha left in Battambang due to land concession and encroachment.  

• Samlout Multiple Use Area: More than 60,000 ha in Battambang and Pailin, of which 

40,000 ha is located in Battambang. Currently, there are around 10,000 ha left due to land 

clearance for cash crops and commercial farming. 

 

2.4. Natural disasters  

2.4.1. Flooding impacts  

According to the provincial water resource department in Battambang, a river with 

water levels above 12.5 meters high would flood the city. Flooding has been recorded in 

every Sangkat (commune) of Battambang municipality during the rainy season from June 

to December. In 2013, serious floods affected the whole province (flooding occurred mostly 

in October to December). The highest level of flooding occurred in Sangkats Svay Por and 

Preak Preak Sdach with water depths ranging from one to two meters. Table 2.3 below 

summarizes the annual flooding capacity happened in Stung Sagnkae River. 

Official records from various documents show that in 2011 (with water levels up to 

13.95 m) floods affected 31,458 people (7,111 households in 31 communes in nine districts), 

inundated 52,503 ha, and destroyed 36,266 ha of rice fields. Flooding in 2013 was even 

more serious as water levels reached a historical height of 14.2 meters high along Sangke 
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River (normally 12.5 meters, water  started to overflow from the river to the town and areas 

in lowlands or wetlands). 

Floods in late 2013 are considered as the worst in 70 years (MoWRAM, 2013). Various 

sources of water from upstream, including torrential rain, concentrated throughout the 

Sangker River including other watershed areas down the river and across the province. 

 

Table 2.3. Flood record of Stung Sangkae River 

Year 
Max. Annual 

water level (m) 

Annual Flood 

(m3/s) 
Year 

Max. Annual 

water level (m) 

Annual Flood 

(m3/s) 

1999 12.37 634 2010 11.12 337 

2000 13.44 1009 2011 13.95 1235 

2001 12.14 569 2012   

2002 11.59 433 2013   

2003 13.02 846 2014   

2004 12.08 552 2015   

2005 13.39 988 2016   

2006 13.71 1125 2017   

2007 13.50 1034 2018   

2008 12.14 569 2019   

2009 12.08 552 2020   
Source: Cities Development Initiative for Asia and Asian Development Bank (2010) and Provincial Department

 of Water Resource and Meteorology (2013) 

 

2.4.2. Drought impacts   

Climate change is impacting Cambodia through more frequent, abnormal climate 

events with increasing temperatures, decreasing rainfall, and the delay of the monsoon onset 

– all contributing to the occurrence of droughts. Tonle Sap provides Cambodians with 

between 60 and 70 percent of their annual protein intake. In 2019, the amount of water 

flooding into the Tonle Sap was low, and fishing communities had lower fish catches than 

the previous years. Some districts, cities and provinces had a shortage of domestic water 

such as Khemarak Phumin city of Koh Kong, Stung Staung of Kampong Thom province, 

stung Maung Russey and Stung Sangker of Battambang, Ta Pon reservoir of Koh Kong, 

stung Mongkulborey, Trapaing Thmar reservoir of Bateay Meanchey. The drought expanded 

into the rainy season because of the delay of the onset of rains. This had an impact on the 

agricultural sector in 16 provinces, which affected 324,641 ha of rice and damaged 67,663 

ha, of which 25,539 ha of rice could be recovered; 44,734 ha of other crops were affected 

and 7,746 ha damaged (Table 2.4).  
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Table 2.4. Summary of major drought events and their impacts on agriculture in 

Cambodia 

Affected region Affected rice (ha) Affected crop (ha) Recovered (ha) 

Tboung Khmum 5,150  467 

Kampong Cham 6,003   

Prey Veng 16,211   

Kandal 503   

Kampong Thom 15,957  648 

Preah Vihear 4,610   

Mondulkiri 223   

Udormeanchey 872   

 Siem Reap 36,410   

Banteay Meanchey 67,681   

Battambang 104,718 44,734 23522 

Pailin 1,610   

Svay Rieng 1,736  580 

Pursat 62,381  312 

Takeo 185   

Kampong Chhnang 266   

Phnom Penh 125   

Source: Mekong Annual Hydrology Report (2019)  
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CHAPTER 3 

Impacts of Land Use and Land Cover Changes on Hydrological 

Responses in Stung Sangkae River Catchment from 2002 to 2015 

 

3.1. Introduction 

Generally, regional impacts of land use change on hydrology vary from place to place 

and need to be considered for specific circumstances and environments (Wang et al. 2014).  

Rapid population growth, urbanization, and economic development increase water, energy, 

and food demands, accelerating pressures on land and water resources across the globe 

(Aghsaei et al., 2020). Recently, many regions worldwide have undergone considerable 

land-use and land cover (LUC) changes, especially in developing countries. These LUC 

changes significantly influence various hydrological components such as evapotranspiration, 

soil infiltration, groundwater recharge, surface runoff generation, and sediment generation 

(Öztürk et al., 2013). As such, LUC is considered an important input in many applications 

related to water resources assessment as well as soil erosion and degradation assessment 

(DeFries and Eshleman, 2004). In the context of LUC change, understanding and evaluating 

the responses of hydrology and sediment yield are indispensable for the sustainable 

management of land and water resources of a river basin. Effective management and 

conservation of water and soils under changing LUC scenarios can be attainable through 

reliable runoff and sediment generation estimations in a river basin.  

Previous studies have analyzed the impact of land use and land cover changes in some 

watersheds (Kalantari et al., 2014; Noda et al., 2017; Muto et al., 2022), as they are 

considered the two key drivers exerting influence on water and sediment dynamics. 

Moreover, in Mekong Basin, some research has also been done on the impacts of land use 

change on hydrology (Markert et al., 2018; Shrestha et al., 2018), but research on the 

contribution of individual LULC to the total runoff and the impacts of LULC changes on 

watershed hydrology is lacking. In particular, there is a lack of information for evaluating 

the benefits of soil and water conservation in the Stung Sangkae River catchment, where it 

is difficult to distinguish the impacts of LULC changes on hydrology. A greater 

understanding of the contribution of individual LULC change to runoff and the effects of 

LULC changes on the hydrology at different scales is needed to guide comprehensive natural 

resources management in this region. 
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Methods for assessing the hydrological impacts of land use changes in watersheds 

include comparisons of paired catchments, statistical analysis, and hydrological modeling 

(Li et al., 2009; Khoi and Suetsugi, 2014; Li et al., 2012). Hydrological modeling is the most 

suitable for scenario studies at different scales among these approaches. Widely used 

hydrological models in studies on the impacts on watershed hydrology include the 

Hydrologic Simulation Program, FORTRAN, the Soil and Water Assessment Tool (SWAT), 

and WaTEM/SEDEM (Mango et al. 2011; Nie et al. 2011; Khoi and Suetsugi, 2014; Wang 

et al. 2014). It is readily available and user-friendly for data input (Arnold et al. 1998). 

The overall objectives of this study are to investigate the contributions of individual 

LULC change to runoff and to determine the impacts of LULC changes on the hydrology of 

the Stung Sangkae River catchment by an integrated approach that combines hydrological 

modeling and national LULC 2002 and LULC 2015. The specific objectives are (1) to 

investigate the LULC changes in the catchment from 2000 to 2018 with national LULC maps 

in 2002 and 2015; (2) to assess the hydrological effects of individual land uses, and (3) to 

simulate responses of hydrologic components to land use changes at basin and subbasin 

scales. The results should assist decision-makers in target water resources planning and 

vegetation restoration on the Stung Sangkae River catchment. 

 

3.2. Methodologies 

3.2.1. Description of Study Area 

The Stung Sangkae catchment (605,170 ha), which is the third-largest tributary of the 

Tonle Sap Basin River system, is located in the upper north-western part of Cambodia 

between 12°13′–13°24′ N and 102°35′–103°42′ E (Figure 3.1). The topography is level 

within the floodplain region and rough with slopes at the upland portion of the catchment, 

having elevations extending from 4 m at the most reduced point to 1,413 m a.s.l at the most 

noteworthy point. The main river that flows through the catchment, Sangkae River, lies 

between the tributaries of the Tonle Sap Great Lake in the upper western part of the 

catchments. Agriculture is the main local economic activity and the main source of 

livelihood. Meteorological data collected from six weather stations in 2007–2018 showed 

that the average annual precipitation in the study area varied from 1,308 mm at Moung 

Ruessei station to 1,577 mm at Samlout station, with little change during the year. The major 

soil types in the region are categorized into 4: (1) Gleysols are wetland soils, which in the 

natural state are continuously water-saturated within 50 cm of the surface for extended 
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periods; (2) Luvisols are a type of soil in which highly active clay migrates from the top part 

of the profile, usually gray, and is deposited in the B layer, usually brown; (3) Nitisols are 

mainly deep, well-drained soils with a stable structure and high nutrient content; and (4) 

Acrisols are clay-wealthy soils which can be fairly vulnerable to erosion. 

 

 

Figure 3.1.  Location map of the research catchment and meteorological stations 

within the research area 

 

3.2.2. Description of SWAT Model 

The Soil and Water Assessment Tool (SWAT) model was developed by the US 

Department of Agriculture-Agriculture Research Service (Neitsch et al., 2005). It is a 

conceptual, physically-based, daily-time-stepped, basin-scale, semi-distributed model 

operating on a continuous time-step. Model components include weather, hydrology, 

erosion/sedimentation, plant growth, nutrients, pesticides, agricultural management, channel 

management, and pond/reservoir management. This model has several advantages as it has 

integrated multiple environmental processes, uses readily available inputs, is user-friendly, 

is physically based, and is computationally efficient to work in large basins in a reasonable 



48 

time (Pai et al., 2012). SWAT was used with ArcSWAT 2012 release in an ArcGIS 10.x 

extension. This interface streamlines data entry, creation of required input files, and 

manipulation of parameters while allowing easy observation of spatial parameters in the 

ArcGIS environment. In ArcSWAT, the watershed has been delineated into a series of sub-

basins, which have been further subdivided into Hydrological Response Units (HRUs) 

consisting of homogeneous land use, management, and soil properties. The model 

calculations were performed on an HRU basis and flow and water quality variables were 

routed from HRU to sub-basins and then to the watershed. SWAT estimates soil erosion 

using the Modified Universal Soil Loss Equation (MUSLE) (Zhang and Nearing, 2005). The 

strong emphasis on vegetation and hydrological interactions within SWAT makes it a 

preferred model for this land-use-based hydrological analysis. 

  

3.2.2.1. Hydrological Component and Water Balance of SWAT  

The catchment area hydrology simulation was conducted in two separate phases. The 

first phase was the land phase of the water cycle, which controls the amount of water, 

sediment, nutrients, and pesticides entering the main channel in each sub-basin. The second 

division was the conducting phase of the water cycle, defined as the movement of water, 

sediment, nutrients, and organic chemicals through the watershed's network of channels to 

the outlet (Figure 3.2). In the land phase of the water cycle, SWAT simulates the water cycle 

based on the water balance equation.  

SWt =  SWo + ∑ (𝑅 𝑑𝑎𝑦 − 𝑄 𝑠𝑢𝑟𝑓 − 𝐸 𝑎 −𝑊 𝑠𝑤𝑒𝑒𝑝 − 𝑄𝑞𝑤)
𝑡

𝑖=0 
 (1) 

Where: SWt is the final soil water content (mm), SWo is the initial soil water content 

on day i (mm), t is the time (days), Rday is the amount of precipitation on day i (mm), Qsurf is 

the amount of surface runoff on day i (mm), Ea is the amount of evapotranspiration on day i 

(mm), Wsweep is the amount of water entering the vadose zone from the soil profile on day i 

(mm), and Qgw is the amount of return flow on day i (mm) (Arnold, 1998; Neitsch, 2005).  
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Figure 3.2. Hydrological cycle in the conceptual SWAT model 

 

One critical parameter evaluated for sustainable water resource management of the 

study area is the water yield. Water yield is the aggregate sum of water leaving the HRU and 

entering the principle channel during the time step (Arnold et al., 2011). Water yield within 

a watershed is evaluated by the model based on Eq. (2): 

W𝑦𝑙𝑑  =  𝑄 𝑠𝑢𝑟𝑓 + 𝑄𝑞𝑤 + 𝑄𝑙𝑎𝑡 − 𝑇𝑙𝑜𝑠𝑠  (2) 

 

where W𝑦𝑙𝑑  is the measure of water yield (mm), 𝑄 𝑠𝑢𝑟𝑓 is the surface runoff (mm), 𝑄𝑙𝑎𝑡 is 

the lateral flow contribution to stream (mm), 𝑄𝑞𝑤 is the groundwater contribution to 

streamflow (mm), and 𝑇𝑙𝑜𝑠𝑠is the transmission losses (mm) from tributary in the Hydraulic 

Response Units (HRU) by means of transmission through the bed. The estimation of surface 

runoff can be performed by the model using the SCS curve number system by the USDA 

Soil Conservation Service (Eq. (3)). 
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3.2.2.2. Surface Runoff Equation of SWAT 

Surface runoff occurs whenever the rate of precipitation exceeds the rate of infiltration. 

The runoff from each HRU is predicted separately and routed for the determination of the 

aggregate yield for the catchment separately in the SWAT model, thereby increasing the 

precision and giving an improved physical description of water balance. The concept of 

infiltration excess runoff is used in SWAT 2012, where it is assumed that runoff occurs 

whenever the infiltration rate exceeds the rainfall intensity. SWAT offers two methods for 

estimating surface runoff: the Soil Conservation Service (SCS) curve number procedure 

(Neitsch, 2005) and the Green and Ampt infiltration method (Green, 1911). Using daily or 

sub-daily rainfall, SWAT simulates surface runoff volumes and peak runoff rates for each 

HRU. The SCS curve number equation is: 

𝒬surf =
(Rday − 0.2S)

2

(Rday + 0.8S)
 (3) 

 

where, 𝒬surf is the surface runoff or rainfall excess (mm),  Rday is the rainfall depth for the 

day (mm) and S is the retention parameter. 

The retention parameter varies spatially due to changes in soil, land use, management 

and slope and temporally due to changes in soil water content. The retention parameter is 

defined as: 

S = 254 (
100

CN
− 1) (4) 

 

where, S is the retention parameter, CN is the curve number for the day. 

 The SCS curve number is a function of the soil’s permeability, land use and antecedent 

soil water conditions. The curve number value is range from 0 to 100 (Figure 3.3). 
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Figure 3.3. Relationship of runoff to rainfall in SCS curve number method 

 

In the SWAT model, the antecedent moisture condition is defined on the basis of 

Curve- Number Antecedent moisture condition (CN-AMC) (USDA – NRCS, 2004). This is 

done on the basis of soil moisture content calculated by the model (Neitsch et al., 2011) to 

determine CN. 

Antecedent moisture condition (AMC) is defined as the initial moisture content which 

exists in the soil at the start of the rainfall-runoff event under consideration. AMC governs 

the infiltration and initial abstraction. SCS recognizes three levels of AMC for the purpose 

of practical application, which is mentioned below: 

­ AMC-I: Soils are dry but not to the wilting point 

­ AMC-II: Average condition 

­ AMC-III: Sufficient rainfall has occurred within the immediate last 5 days. 

Saturated soil condition prevails. 

The variation of CN according to AMC-I, AMC-II, AMC-III is known as CNI, CNII 

and CNIII respectively. CNII can be converted to the other two moisture conditions through 

the use of equations (5) and (6): 

CNI = CNII − (
20 ∙ (100 − CNII)

(100 − CNII + exp[2.533 − 0.0636 ∙ (100 − CNII)])
)             (5) 
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CNIII = CNII ∙ exp[0.00673 ∙ (100 − CNII)]           (6) 

The soil and land use properties are merged into a single parameter in the SCS-CN 

method (White and Chaubey, 2005). On the basis of infiltration properties of soil, the Natural 

Resources Conservation Service (NRCS) soil classification is used in SWAT (Neitsch et al., 

2011), where soils are categorized to four classes (A, B, C, D) with high, moderate, low and 

very low infiltration rate respectively (Table 3.1). Permeability, average clay content, 

infiltration characteristics, and effective depth of soil are some of the significant soil 

characteristics which affect the hydrological classification of soils. In this classification, 

under similar cover and storm conditions, a soil group has a similar hydrologic classification. 

Table 3.1.  Runoff curve numbers for cultivated agricultural lands 

Land use 
Hydrologic 

condition 

Hydrologic Soil Group  

A B C D 

Pasture, grassland, or range - continuous 

forage for grazing 

Poor 68 79 86 89 

Fair 49 69 79 84 

Good 39 61 74 80 

Meadow - continuous grass, protected from 

grazing and generally mowed for hay 
−−−− 30 58 71 78 

Brush - brush - weed - grass mixture with 

brush the major element 

Poor 48 67 77 83 

Fair 35 56 70 77 

Good 30 48 65 73 

Woods - grass combination (orchard or tree 

farm) 

Poor 57 73 82 86 

Fair 43 65 76 82 

Good 32 58 72 79 

Woods 

Poor 45 66 77 83 

Fair 36 60 73 79 

Good 33 55 70 77 

Farmsteads - buildings, lanes, driveways, and 

surrounding lots 
−−−− 59 74 82 86 

 

3.2.2.3. Flow Rate Equation of SWAT 

Manning’s equation for uniform flow in a channel is used to calculate the rate and 

velocity of flow in a reach segment for a given time step: 

qch =
Ach ∙ Rch

2/3
∙ slpch

1/2

n
         (7) 

 

vc =
Rch
2/3
∙ slpch

1/2

n
              (8) 

 where, 𝑞𝑐ℎ is the rate of flow in the channel (m3/s), 𝐴𝑐ℎ is the cross-sectional area of 

flow in the channel  (m2), 𝑅𝑐ℎ is the hydraulic radius for a given depth of flow (m),  𝑠𝑙𝑝𝑐ℎ is 
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the slope along the channel length (m/m), 𝑛 is Manning’s n coefficient for the channel, and 𝑣𝑐 

is the flow velocity  (m/s). 

 

3.2.2.4. Soil Loss Equation of SWAT 

The SWAT model comprises two phases: a land phase solved at HRU level, and a 

stream phase solved at reach (subbasin) level (Neitsch et al., 2011). The land phase 

comprises the computation of HRU daily water balance and sediment yields. The HRU daily 

water balance considers precipitation, irrigation, evapotranspiration, surface runoff, lateral 

flow, and percolation to shallow and/or deep aquifers (Neitsch et al., 2011). 

HRU sediment yields for non-urban land use types are estimated with the MUSLE 

(Williams, 1975): 

𝑆𝑌𝑀𝑈𝑆𝐿𝐸 = 11.8(𝑄 × 𝑞𝑝 × 𝐴)
0.56

K.LS.C.P.F
CRFG

  

          
(9) 

SY = HRU sediment yield (t/day); Q = daily runoff volume (mm); qp = runoff peak 

discharge (m3/s); A = HRU area (ha); C, P, K, and LS are dimensionless factors accounting 

for HRU crop cover, soil protection, soil erodibility, and topography as defined in the 

original Universal Soil Loss Equation (USLE) (Wishmeier and Smith, 1978); and FCRFG is 

a dimensionless factor to account for coarse fragment cover (stoniness). Contrary to the 

USLE, the MUSLE uses the energy of surface runoff rather than of rainfall to estimate 

sediment yields, which makes it suitable for application at daily time scale. Since it estimates 

sediment yields and not gross erosion, the MUSLE already accounts for sediment deposition 

within the HRU. Conversely, sediment yields from urban HRUs are estimated based on 

precipitation or with a ‘build up/wash off’ approach; the latter method was selected in this 

study, keeping the default settings (Neitsch et al., 2011). 

Daily outputs of all HRUs of a subbasin are routed through the stream network (stream 

phase). The stream phase comprises the routing of water, sediments and other pollutants in 

the cascading sequence of reaches composing the stream network. 

All streamflow components (surface runoff, lateral flow, and baseflow) are routed to the 

reach and along the stream network (Neitsch et al., 2011). 

 

3.2.2.5. Meteorological and Hydrological Data 

The long-term records of meteorological data (1995-2018) were collected from five 

stations (Battambang, Moung Ruessei, Rotanak Mondol, Samlout, and Pailin) which lie 

https://www.sciencedirect.com/science/article/pii/S0048969715305994#bb0280
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/evapotranspiration
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/percolation
https://www.sciencedirect.com/science/article/pii/S0048969715305994#bb0280
https://www.sciencedirect.com/science/article/pii/S0048969715305994#bb0400
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/peak-discharge
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/peak-discharge
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/erodibility
https://www.sciencedirect.com/science/article/pii/S0048969715305994#bb0410
https://www.sciencedirect.com/science/article/pii/S0048969715305994#bb0280
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/streamflow
https://www.sciencedirect.com/science/article/pii/S0048969715305994#bb0280
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inside and outside the border of the study catchment. The observations of meteorological 

variables of each station were obtained from the Ministry of Water Resources and 

Meteorology (MOWRAM) of Cambodia. Since temperature, relative humidity, wind speed, 

and solar radiation data records were limited for all the stations except for the Battambang 

and Pailin stations, weather generator capabilities of the SWAT model were used to generate 

those data by using Lalibela station records. Daily stream flow records (2000–2018) at Stung 

Sangkae gauging station located in Battambang city, in the middle of the catchment, were also 

obtained from the Department of Hydrology and River Work (DHRW) of MoWRAM. 

  

3.2.2.6. Geographical or Spatial Datasets 

The digital elevation model (DEM) of Stung Sangkae River catchment with 30 by 30 m 

DEM resolution (Figure 3.4.a) was obtained from the United States Geological Survey (USGS) 

Earth Explorer at https://earthexplorer.usgs.gov. This DEM was used to delineate the catchment 

and the drainage patterns of the surface area analysis. Subbasin parameters such as slope length of 

the terrain, slope gradient, and stream network characteristics such as channel length, slope, and 

width were derived from this DEM. It was also used to determine the hydrological parameters of 

the catchment, such as flow accumulation, direction, and stream network.  

A digitized soil map of Stung Sangkae catchment as shown in Figure 3.4b was 

acquired from the FAO/UNESCO Soil Map of the World database through the Harmonized 

World Soil Database (HWSD) because the observed data of the local soil properties in 

Cambodia is limited and difficult to access. The HWSD is a 30-arc-second raster database 

(approximately 1 km of spatial resolution) with over 15,000 different soil mapping units that 

combine existing regional and national updates of soil information around the world. The 

soil data needed for the physical and chemical characteristics of the soil both play a large 

role in determining the movement of water and air within the HRU. The properties required 

by SWAT for each layer of each soil type include the depth of the soil layer, soil texture, 

hydraulic conductivity, bulk density, and organic carbon content, and soil depth for the 

different layers of soil were obtained mainly from Tonle Sap River basin integrated 

development master plan and major soils of the world (FAO, 2006).  

The digital land use and land cover data of JICA in 2002 and MRC in 2015 (Figure 

3.4.c,d) of the study area was obtained from the Ministry of Agriculture, Forestry and 

Fisheries (MAFF) of Cambodia and Mekong River Commission (MRC). 
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For comparative use of the land use land cover evolution, LULC of 2002 was obtained 

from MAFF, and LULC of 2015 was obtained from MRC with the same scale (Figure 3.4 

d). The LULC of the study area is categorized into eleventh groups for JICA 2002 and MRC 

2015 respectively. Even though there have been marked changes in coverage but in both 

reference land uses of forest land (evergreen, deciduous and mixed forests), paddy rice, 

agricultural land, shrub land and grasslands were the dominant land uses in the study area.  

  

(a) Elevation in meter of the study area (b) FAO/UNESCO soil of thee study area 

  
(c) 2002 LULC Map of JICA (d) 2015 LULC Map of MRC 

Figure 3.4. Digital elevation model (a), soil map (b) and historical land use and land cover 

map of 2002 LULC (c) and 2015 LULC (d) of Stung Sangkae catchment 

 

3.2.2.7. Slope Classes in Subwatershed 

To develop the hydrological response unit (HRU) in the SWAT model, the slope is 

essential. It generates from the resolution of 30 m x 30 m DEM for the study area. Slope 

classification may be single class or multiclass. For this study, the slope option (an option 
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for considering different slope classes for HRU definition) was selected. Therefore, the slope 

class in this study was classified into four classes. According to Setegn, et al. (2008), slope 

classification was used to account for lower range in hydrological modelling. Depending on 

the slope of 0–2%, 2–5%, 5–10%, 10–25% and >25% were selected for HRU creation of the 

study Stung Sangkae River catchment. Finally, HRU definition analysis in SWAT helps to 

load LULC and soil type projects. 

 

3.2.3. SWAT Model Simulation, Sensitivity Analysis, Calibration and Validation 

The simulation result cannot be directly used for further analysis. Instead, the ability 

of the model to sufficiently predict the constituent streamflow should be evaluated through 

sensitivity analysis, model calibration, and model validation (White and Chaubey, 2005). 

The first step in the calibration and validation process in SWAT is the determination of the 

most sensitive parameters for a given watershed or subwatershed (Arnold et. al. 2012). 

 

3.2.3.1. Model Parameterization and Sensitivity Analysis 

Parameter sensitivity analysis provides insights as to which parameters contribute 

most to the output variance due to input variability (Holvoet, et al., 2005). The sensitivity 

analysis method implemented in SWAT model is called the Latin hypercube One-At-a–Time 

(LH-OAT) design as proposed by Mories (1991). Sensitivity analysis was then performed to 

identify those parameters that model outputs were sensitive to. In general, a parameter should 

be included in calibration if sensitivity analysis identifies that there is a 95% probability that 

the sensitivity of a variable to a particular parameter is significant. Stream flow sensitivity 

analysis followed by sediment yield sensitivity analysis was performed for each time 

reference land uses (2002 LULC and 2015 LULC). For each reference land uses stream flow 

sensitivity analysis was done with 12 number of interval within latin hypercube for a total 

of 12 flow parameters (324 iterations) for each LULC maps. The sensitivity of parameters 

were categorized in to classes of small 0 < RS < 0.05, Medium 0.05 < RS < 0.2, High 0.2 < 

RS < 1, very high RS > 1.0 according to Lenhart, Eckhardt, Fohrer, and Frede (2002). Flow 

parameters were selected for calibration those their value ranges between very high to 

medium classes of sensitivity class above. 
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3.2.3.2. Model Performance Evaluation, Calibration and Validation 

Before calibration proceeds, the performance of the model was evaluated for the initial 

simulation with the model default parameter values. But the default SWAT simulation result 

was with the discrepancy between measured and simulated outputs. Hence both automatic 

and manual calibrations was done respectively. SWAT model calibration for stream flow 

was performed for 2002 LULC and 2015 LULC separately at the catchment outlet located 

in the middle of Stung Sangkae River. Only sensitive parameters were included in the 

calibration of the model at a weekly and monthly time-step against observations of discharge 

loads recorded data at the outlet located in the middle of the Stung Sangkae catchment. 

After running of the model for analysis of results, simulated stream flow was evaluated 

by visual inspection and quantitative statistics i.e. to evaluate how the model simulates well. 

For quantitative statistics the model performance was evaluated using three statistical criteria, 

the coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE) and percent bias 

(PBIAS) as recommended by Moriasi et al. (2007). NSE is a normalized statistic that 

describes the relative magnitude of the residual variance as compared to the observed and 

demonstrates how well the plot of observed versus simulated value fits the 1:1 line. The 

Nash-Sutcliffe Efficiency (NSE) coefficient proposed by Nash and Sutcliffe (1970) is 

defined by Eq. (1). R2 ranges from 0 to 1 and explains the proportion of variance in the 

observed data with higher value indicating less error variance. R2 is defined by Eq. (2). 

PBIAS measures the average tendency of the simulated data to be larger or smaller than their 

observed counterparts and is defined by Eq. (3). A positive value PBIAS indicates model 

under estimation bias and negative value indicates model over estimation bias. In general 

model simulation can be judged as satisfactory if NSE >0.4 and R2>0.5 and PBIAS ±25% 

(Table 3.2) for stream flow and PBIAS ±55% for sediment yield (Ajai, Mohd, Isaacc, & 

Denisc, 2014). For the visual inspection, the scatter plots were used. 

All simulated results from calibration and validation were evaluated by three 

quantitative statistics: Coefficient of determination (R2), the Nash-Sutcliffe efficiency (NSE), 

and percent bias (PBIAS) (Moriasi et al. 2007). 

 

NSE = 1 −
∑ (𝑂𝑖 − 𝑆𝑖)

2𝑛
𝑖=1

∑ (𝑂𝑖 − 𝑂̅)2
𝑛
𝑖=1

 (1) 
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 R2 =

(

 
∑ (Oi − O̅)(Si − S̅)
n
i=1

√∑ (Oi − O̅)2
n
i=1 √∑ (Si − S̅)2

n
i=1 )

 

2

 (2) 

  

PBIAS =
∑ (𝑂𝑖−𝑆𝑖)
𝑛
𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

 x 100% (3) 

 

where 𝑂𝑖 is the observed value at time 𝑖, 𝑂̅ is the average observed value, 𝑆𝑖 is the simulated 

value at time 𝑖, 𝑆̅ is the average simulated value, and 𝑛 is the number of registered observed 

data. 

Table 3.2. Model performance evaluation classification 

Statistic 
Evaluation rating 

Unsatisfactory Satisfactory Good Very good 

R2 < 0.50 0.50 ‒ 0.60 0.60 ‒ 0.70 0.70 ‒ 1 

NSE < 0.50 0.50 ‒ 0.65 0.65 ‒ 0.75 0.75 ‒ 1 

PBIAS > ±25 ±15 < PBIAS < ±25 ±10 < PBIAS < ±15 < ±10 

 

Model validation was done to ensure that the calibrated set of parameters performs 

reasonably well under an independent data set. To utilize any predictive watershed model 

for estimating the effectiveness of feature potential management practices, the model was 

validated against an independent dataset without adjusting calibrated parameters. The period 

of 2000–2010 and 2011–2018 daily stream flow data was used for model calibration and 

validation for 2002 and 2015 LULC, respectively in a monthly time scale. 

 

3.3. Results and Discussion 

3.3.1. Analysis of Land Use and Land Cover Changes 

The dominant land use types of the Stung Sangkae catchment in both reference land 

uses are forest land (evergreen, deciduous and mixed forests), paddy rice, agricultural land, 

shrub land and grasslands, which in the total account over 92% of the total area. However, 

their individual percentage coverage of these dominant land uses in each reference land use 

is different (Table 3.3). 
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Table 3.3. Summary analysis of land use and land cover of the Stung Sangkae 

catchment in 2002 and 2015 

SWAT 

Code 
LULC Types 

JICA 2002 MRC 2015 Net Change 

Area  

(ha)  

Area  

(%) 

Area  

(ha)  

Area 

(%) 

Area  

(ha)  

Area 

(%) 

AGRL Agricultural land 25,627.2 4.24 152,742.3 25.24 127,115.0 21.00 

BARR Barren land 149.2 0.02 274.0 0.04 124.8 0.02 

URML Built-up area 1,702.8 0.28 20,870.1 3.45 19,167.3 3.17 

FRSD Deciduous forest 74,524.7 12.31 24,144.9 3.99 −50,379.8 −8.32 

FRSE Evergreen forest 110,474.4 18.26 90,338.0 14.93 −20,136.4 −3.33 

FRST Mixed forest 75,361.5 12.45 64,710.9 10.69 −10,650.6 −1.76 

RICE Paddy field 92,784.8 15.33 144,931.5 23.95 52,146.7 8.62 

RNGE Grassland 79,496.0 13.14 29,394.2 4.86 −50,101.8 −8.28 

RNGB Shrubland 141,689.0 23.41 74,019.0 12.23 −67,670.0 −11.18 

WETN Marsh and swamp 280.3 0.05 35.8 0.01 −244.6 −0.04 

WATR Water bodies 3,080.1 0.51 3,709.4 0.61 629.3 0.10 

 Total 605,170.0 100.00 605,170.0 100.0   

 

The results of the transition matrix of LULC changes between 2002 and 2015 are 

shown in (Figure 3.5., Figure 3.6, Table 3.4 and Table 3.5). The transformations among 

shrubland, forest land (Evergreen, mixed and deciduous forest), and grassland were the main 

forms of land use changes in the Stung Sangkae catchment; the area of agricultural land and 

paddy field increased and the area of forest land decreased. Agricultural land showed the 

largest change (Figure 3.5 and 3.6). Meanwhile, due to social development, the area of built-

up land increased markedly at the expense of farmland. Finally, a tiny proportion of it was 

changed into water or wetland and unused land. In the southeast, a part of the watershed 

grassland was turned into farmland. Among other classes of transition of LULC, the mixed 

forest transformed to agricultural land the most (57,794 hectares); however, there was also 

a transformation of shrubland to mixed forest (57,623 hectares) which was almost the same 

area as its conversion to agricultural land (Table 3.3).  

Table 3.4 shows the LULC change detection matrices for different time periods from 

2002 to 2015 of the conversion from each class to other individual classes. For instance, 

considering the entire study period of 2002-2015, 11,300 hectares of agricultural land 

remained unchanged, 141,440 hectares of new agricultural land were created from 

conversions of mixed forest (57,780 hectares), deciduous forest (38,330 hectares), evergreen 

forest (19,860 hectares), shrubland (14,330 hectares), grassland (6,650 hectares), paddy field 

(4,180 hectares) and the other categories (330 hectares). Moreover, 14,330 hectares of 
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agricultural land were lost from conversions to the built-up area (11,820 hectares), paddy 

fields (1,470 hectares), shrubland (660 hectares), water bodies (250 hectares), deciduous 

forest (120 hectares) and other types (7 hectares). Agricultural land was the LULC type that 

expanded the most (141,440 hectares), followed by mixed forest (63,250 hectares), paddy 

field (62,290 hectares), shrubland (46,400 hectares), built-up areas (19,220 hectares), and 

grassland (17,000 hectares). At the same time, the LULC types with the highest loss were 

shrubland, mixed forest, grassland, and deciduous forest, with loss areas of 114,000 hectares, 

73,900 hectares, 67,100 and 53,820 hectares, respectively (Table 3.4). 

 

 

Figure 3.5. Gains and losses between 2002 and 2015 

 

Figure 3.6. Net change between 2002 and 2015  
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Table 3.4.  Transition of LULC by ignoring the area less than 500 ha 

Category  Hectares  Legend 

1 38,315 Deciduous forest to Agricultural land 

2 19,848 Evergreen forest to Agricultural land 

3 6,648 Grassland to Agricultural land 

4 57,794 Mixed forest to Agricultural land 

5 4,168 Paddy field to Agricultural land 

6 14,332 Shrubland to Agricultural land 

7 11,825 Agricultural Land to Built-up area 

8 738 Deciduous forest to Built-up area 

9 595 Grassland to Built-up area 

10 580 Mixed forest to Built-up area 

11 4,969 Paddy field to Built-up area 

12 653 Evergreen forest to Deciduous forest 

13 2,576 Mixed forest to Deciduous forest 

14 3,714 Deciduous forest to Evergreen forest 

15 2,568 Mixed forest to Evergreen forest 

16 753 Shrubland to Evergreen forest 

17 16,774 Shrubland to Grassland 

18 5,080 Grassland to Mixed forest 

19 57,623 Shrubland to Mixed forest 

20 1,462 Agricultural Land to Paddy field 

21 1,394 Deciduous forest to Paddy field 

22 35,490 Grassland to Paddy field 

23 23,447 Shrubland to Paddy field 

24 658 Agricultural Land to Shrubland 

25 9,400 Deciduous forest to Shrubland 

26 6,719 Evergreen forest to Shrubland 

27 18,714 Grassland to Shrubland 

28 9,578 Mixed forest to Shrubland 

29 853 Paddy field to Shrubland 

30 661 Shrubland to Water bodies 
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Table 3.5. Matrix of land use and land cover (LULC) change contribution to net change experienced by LULC types in hectare (ha) and 

percentage (%) for 2002–2015 

LULC Class 

LULC 2015 

AL BL BA DF EF GL MS MF PF SL WB Grand 

Total 
Loss 

ha % ha % ha % ha % ha % ha % ha % ha % ha % ha % ha % 

L
U

L
C

 2
0

0
2

 

Agricultural land 11300 7 0 0 11821 57 116 0 4 0 1 0 0 0 2 0 1470 1 662 0.9 252 7 25627 14328 

Barren land 110 0 6 2 24 0 7 0 0 0 0 0 0 0 0 0 1 0 2 0.0 0 0 150 144 

Built-up area 19 0 0 0 1646 8 0 0 0 0 0 0 0 0 0 0 13 0 0 0.0 24 1 1703 57 

Deciduous forest 38328 25 23 9 746 4 20706 86 3709 4 0 0 0 0 157 0 1399 1 9390 12.7 66 2 74525 53818 

Evergreen forest 19856 13 70 26 19 0 651 3 83183 92 3 0 0 0 0 0 0 0 6725 9.1 34 1 110542 27359 

Grassland 6646 4 59 22 592 3 18 0 28 0 12394 42 19 54 5090 8 35494 24 18704 25.3 452 12 79496 67102 

Marsh and swamp 0 0 0 0 0 0 0 0 4 0 0 0 0 0 42 0 0 0 233 0.3 0 0 280 280 

Mixed forest 57777 38 45 16 584 3 2579 11 2612 3 178 1 12 32 1460 2 326 0 9580 12.9 208 6 75361 73901 

Paddy field 4175 3 0 0 4966 24 9 0 39 0 3 0 4 11 10 0 82640 57 850 1.1 88 2 92785 10144 

Shrubland 14330 9 71 26 329 2 56 0 787 1 16753 57 1 2 57630 89 23457 16 27636 37.3 662 18 141710 114075 

Water bodies 201 0 0 0 144 1 3 0 39 0 63 0 0 0 318 0 130 0 258 0.3 1923 52 3080 1157 

 Grand Total 152742  274  20870  24145  90405  29394  36  64711  144931  74040  3710  605259 362366 

 Expansion 141443  269  19224  3439  7222  17000  36  63251  62291  46405  1787  362366  

Note: AL: agricultural land, BL: barren land, BA: built-up area, DF: deciduous forest, EF: evergreen forest, MF: mixed forest, PF: paddy field, GL: grassland, SL: shrubland, 

MS: marsh and swamp, and WB: water bodies; ha = hectare.
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3.3.2. Sensitivity Analysis, Calibration and Validation under Land Use Change Dynamics 

3.3.2.1. Stream Flow Sensitivity Analysis 

Sensitivity analysis results of SWAT model stream flow parameters were identified as 

significant for a period of 10 years (2000−2010) and show a range of most sensitive 

parameters for JICA 2002 LULC (Table 3.6). Almost similar results were obtained by Ying, 

Chen, Wang, and Peng (2011). These parameters are related to groundwater, runoff, and soil 

process and thus influence the stream flow in the catchment. The analysis result was found 

that the ALPHA_BF, which is a direct index of groundwater flow response to a change in 

rechanges, is the most significant factor influencing stream flow. The remaining 11 

parameters are identified as slightly important influencing stream flow parameters in this 

analysis such as the curve number (CN2), the soil available water capacity (SOL_AWC), the 

threshold depth of water in the shallow aquifer required for return flow (GWQMN), the 

groundwater delay (GW_DELAY), the threshold depth of water in the shallow aquifer for 

"revap" to occur (REVAPMN), the effective hydraulic conductivity in tributary channel 

alluvium (CH_K1), the lateral flow travel time (LAT_TTIME), the rate of decline in 

radiation use efficiency per unit increase in vapor pressure deficit (WAVP), the fraction of 

growing season when leaf area starts declining (DLAI), the max leaf area index (BLAI) and 

the total heat units for cover/plant to reach maturity (HEAT_UNITS). These may be 

additional support to the result of the sensitivity analysis. 

 

Table 3.6. Flow parameter sensitivity analysis result in Stung Sangkae catchment 

ID Parameter Default range Fitted value 

1 v__ALPHA_BF.gw 0−1 0.5 

2 v__GW_DELAY.gw 0−500 15 

3 v__GWQMN.gw 0−5000 750 

4 v__REVAPMN.gw 0−1000 745 

5 v__CH_K1.sub 0.01−500 176 

6 v__LAT_TTIME.hru 0−180 30 

7 v__WAVP{6-8}.plant.dat____FRST,FRSD,FRSE 0−50 42 

8 v__DLAI{6-8}.plant.dat____FRST,FRSD,FRSE 0.15−1 0.23 

9 v__BLAI{6-8}.plant.dat____FRST,FRSD,FRSE 0.5−10 9 

10 r__HEAT_UNITS{[],1}.mgt 0−3500 -0.5 

11 r__CN2.mgt 35−98 -0.02 

12 r__SOL_AWC().sol 0−1 0.05 
Note: v__ means that the existing parameter value is to be replaced by the given value; r__ means that the 

existing parameter value is multiplied by 1 plus a factor in the given value. 
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3.3.2.2. Stream Flow Calibration and Validation 

The simulation of the SWAT model with the default value of parameters in the Stung 

Sangkae catchment showed relatively good matching on a monthly basis between the 

simulated and observed streamflow hydrographs. Hence, calibration was done for sensitive 

flow parameters of SWAT with observed monthly stream flow data. Based on the available 

information in the literature, the sensitivity flow parameters were adjusted by the manual 

calibration procedure. In this procedure, the values of the parameters were varied iteratively 

within the allowable ranges until the simulated flow as close as possible to the observed 

stream flow. The SWAT model was calibrated for stream flow in the 2000–2010. Calibration 

performance for the monthly flow was reasonably good in both JICA 2002 (R2 = 0.62, NSE 

= 0.61 and PBIAS = 14) and MRC 2015 (R2 = 0.62, NSE = 0.60 and PBIAS = 13) for Stung 

Sangkae catchment. The calibration performance was reasonably good with limited rainfall 

data as Table 3.7. This is found to be satisfactory for the Stung Sangkae catchment according 

to the performance evaluation criteria.  

 

Table 3.7. Calibration performance for monthly flow at Stung Sangkae catchment 

LULC Calibration period Statistic Value Evaluation 

  R2 0.62 Good 

JICA 2002 (2000-2010) NSE 0.61 Satisfactory 

  PBIAS 14 Good 

  R2 0.62 Good 

MRC 2015 (2000-2010) NSE 0.60 Satisfactory 

  PBIAS 13 Good 

Figure 3.7 presented that the calibrated results of stream flow were not significantly 

different. Both observed and simulated hydrographs had a similar seasonal pattern for Stung 

Sangkae catchment; however, the SWAT model has been shown to underestimate peak 

flows and base flows in some years. Graphically, the monthly simulated peak flow based on 

both JICA and MRC land uses in 2000-2001 and 2003-2006 periods have been 

underestimated by comparing with the monthly observed peak flow. Moreover, the monthly 

simulated peak flow based on both JICA and MRC land uses in 2002 and 2015 periods have 

been overestimated by comparing with the monthly observed peak flow. As represented by 

the calibration period by Figure 3.7 the monthly simulated flow based on MRC land use in 

2015 has slightly increased in both peak and base flow by comparing with the monthly 
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simulated flow based on JICA land use in 2002.    

 

 

Figure 3.7. Monthly streamflow calibration based on JICA and MRC LULC data 

 

Scatter plots between the monthly simulated and observed flow for the calibration 

period of Stung Sangkae catchment had been also shown in Figure 3.8. The calibrated results 

were performed well for Stung Sangkae catchment according to the performance evaluation 

criteria. According to these scatter plots, the correlations between observed and simulated 

flow are positive correlations for calibration in monthly simulation. This positive correlation 
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illustrates that observed and simulated has the same thing due to one variable will be followed by 

changes in the other variables regularly in the same direction. However, the highest correlation is 

in the calibration period based on JICA land use in monthly simulation. 

 

Figure 3.8. Scatter plot of monthly stream flow calibration based on JICA and MRC 
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 The SWAT model validation was carried out from 2011 to 2018 without further 

adjusting the calibrated parameters. However, validation performance for the monthly flow 

was acceptable in both JICA 2002 (R2 = 0.56, NSE = 0.48 and PBIAS = −8) and MRC 2015 

(R2 = 0.56, NSE = 0.48 and PBIAS = −9) for Stung Sangkae catchment, except for the NSE 

value; however, the R2 and PBIAS value were found to be good in this river (Table 3.8). Due 

to the data scarcity, the inaccuracy in rainfall, the budget constraints, and the low investment 

in water infrastructure in Stung Sangkae catchment, the hydrological simulation did not 

perform well for one quantitative statistic (NSE value < 0.5) in the validation period (2011-

2018).  

 

Table 3.8. Validation performance for monthly flow at Stung Sangkae catchment 

LULC Validation period Statistic Value Evaluation 

  R2 0.56 Satisfactory 

JICA 2002 (2011-2018) NSE 0.48 Unsatisfactory 

  PBIAS −8 Very good 

  R2 0.56 Satisfactory 

MRC 2015 (2011-2018) NSE 0.48 Unsatisfactory 

  PBIAS −9 Very good 

 

Figure 3.9 presented that the validated results of stream flow were not significantly 

different. The both observed and simulated hydrograph had the similar seasonal pattern as 

the model validation for Stung Sangkae catchment; however, the SWAT model has been 

shown to overestimate peak flows and base flows in some years. Graphically, the monthly 

simulated peak flow based on both JICA and MRC land uses in 2012 and 2015-2018 periods 

have been overestimated by comparing with the monthly observed peak flow. Moreover, the 

monthly simulated peak flow based on both JICA and MRC land uses in 2011 and 2013-

2014 periods have been underestimated by comparing with the monthly observed peak flow. 

As represented the validation period by Figure 3.9, the monthly simulated flow based on 

MRC land use in 2015 has been slightly increased in both peak flow and base flow by 

comparing with the monthly simulated flow based on JICA land use in 2002.  
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Figure 3.9. Monthly streamflow validation based on JICA and MRC LULC data 

 

Scatter plots between the simulated and observed flow for the validation period of Stung 

Sangkae catchment had been also shown in Figure 3.10. The validated results were performed 

adequately satisfactory for Stung Sangkae catchment according to the performance evaluation 

criteria, except for the NSE value. According to these scatter plots, the correlations between 

observed and simulated flow are also positive correlations for validation in monthly simulation. 

Positive correlation in the validation period also shows that observed and simulated has the same 

thing due to one variable will be followed by changes in the other variables regularly in the same 

0

50

100

150

200

250

300

350

400

450

500

2011 2012 2013 2014 2015 2016 2017 2018

S
tr

ea
m

 f
lo

w
 (

m
3
/s

)

Year

Monthly Flow Validation Based on JICA LULC

Observed flow Simulated flow

0

50

100

150

200

250

300

350

400

450

500

2011 2012 2013 2014 2015 2016 2017 2018

S
tr

ea
m

 f
lo

w
 (

m
3
/s

)

Year

Monthly Flow Validation Based on MRC LULC

Observed flow Simulated flow



  

69 

direction. However, the highest correlation is in the validation period based on JICA land use in 

monthly simulation according to R2 and PBIAS value, which R2 is in the satisfactory evaluation 

and PBIAS is in the very good evaluation. 

 

 

Figure 3.10. Scatter plot of monthly stream flow validation based on JICA and MRC 
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a). Correlation of observed and simulated flow based on LULC in 2022 in 2000-2018  

 

b). Correlation of simulated flow of JICA 2002 and MRC 2015 in 2000-2018 

Figure 3.11. Correlation of observed vs. simulated flow (a) and  correlation of different 

LULC on stream flow (b) 
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In the comparison between the correlation of the observed and simulated flow based 

on JICA LULC in 2000-2018 (Figure 3.11a), the values of the statistical indicators were high 

(R2=0.64, NSE=0.62, and PBIAS=15) if the periods of construction Sek SoK multi-purpose 

dam from 2016 to 2017 was not included. The dam was operated in 2018. This may be 

related to the location of the stream gauge as it was installed in the middle of the catchment 

due to the expansion of the areas of Tonle Sap Lake during the rainy season, so only half of 

the catchment was evaluated. Moreover, the collected stream flow data for model calibration 

and validation was not measured data as it was done by rating curve (H-Q curve) estimated 

from the water level of the Stung Sangkae. The equation of the rating curve developed to 

estimate stream flows for the monitored water levels at the outlets of the 11 Tonle Sap sub-

catchments (Kummu, et al., 2014) is shown in appendix 2 (Table A.1). Moreover, comparing 

the correlation of the LULC of JICA 2002 and MRC 2015 found that there was a non-

significant change in streamflow during the investigation period, even though the LULC 

from 2002 to 2015 significantly occurred. This was because at the upstream catchment, the 

forest cover was changed to agricultural land; however, for the agricultural land (upland), 

many fruit trees were grown; as a result, their robust root system can absorb the runoff during 

the rain. At the downstream, shrubland was changed into forest land; however, it was mainly 

the riparian forest of the Tonle Sap Lake (TSL) floodplain.  

 

3.3.3. Impact of LULC Changes on Stream Flow 

One of the most important things of the study was to evaluate the impact of land use 

and land cover (LULC) changes on the hydrological response of Stung Sangkae catchment. 

The effects of change in LULC on the hydrology (stream flow) in Stung Sangkae catchment 

was analysed on an annual time scale. The yearly output from SWAT model has been 

employed to assess the hydrologic impacts of LULC changes, in which two separate 

simulations of the SWAT model were performed using LULC map of JICA 2002 and MRC 

2015 with the same climatic record (2000-2018), by comparing the annual stream flow data 

from the baseline of LULC in 2002. The mean annual flow was estimated on the basis of 

continuous simulations for 18 years (2000-2018). The simulated average annual stream flow 

maps of two LULC situations were then compared to explore the spatial pattern of changes 

and to assess the hydrologic impacts of LULC changes between 2002 and 2015. A good 

model performance of simulations with change in land use established the contribution of 

land use change to changes in stream flow. Spatial changes in both cubic meter per second 
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and percentage for the mean annual stream flow caused by LULC changes in this study area 

were investigated in many of the sub-catchments as represented in Figure 3.12 and 3.13.  

As shown in Figure 3.12, the study demonstrated that the most significant increases of 

mean annual flow mainly occurred along the main stream of Stung Sangkae river, largely 

matching the spatial distribution pattern of the expansion of agricultural land (21%), paddy 

rice (8.62%), and urban area (3.17%) and the total loss of forest area (13.41%). The result 

of mean annual stream flow in cubic meters per second has increased with the range 

approximately from 0.1 m3/s to 104 m3/s. Figure 3.13 illustrates the mean annual flow in 

each sub-catchment of along the main stream showing the highest mean annual flows with 

the range from 31 m3/s to 101 m3/s. In comparison, the medium mean annual flows occurred 

in the midstream and downstream of the river region with the range from approximately 11 

m3/s to 30 m3/s and the lowest mean annual flows occurred mainly in the downstream region 

with the range from 0.1 m3/s to 10 m3/s. Additionally, due to impacts of LULC change in 

the 2002-2015 period, the highest mean annual flow changes have increased approximately 

0.8 m3/s along the main stream of Stung Sangkae river, especially the downstream, while the 

medium mean annual flow changes have increased around 0.3 m3/s for most sub-catchments 

surrounding the main stream of the catchment; however the lowest mean annual flow 

changes have decreased approximately 0.2 m3/s in the sub-catchment 4 and 6 of the 

downstream in Stung Sangkae river. Moreover, the SWAT model produced the percentage 

change in some areas of sub-catchment as shown in Figure 3.13. The percentage change for 

mean annual flow has increased in the maximum approximately 7% for most of upstream 

areas in Stung Sangkae River while the mean annual flow has increased in the average 

approximately 0.8%, except some areas have decreased approximately 5% such as sub-

catchments of 4, 6, and 15 in Stung Sangkae catchment. 
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Figure 3.12. Spatial distribution of the mean annual stream flow changes in m3/s for 

Stung Sangkae catchment 

 

 

Figure 3.13. Spatial distribution of the mean annual stream flow change in the 

percentage for Stung Sangkae catchment 

 

3.3.4. Contribution of Individual LULC Changes to Catchment Water Yield 

The proportional contributions of six LULC changes (i.e., agricultural land, rice, forest 

land, urban area, grassland and shrubland) and simulated water yield (WY) are shown in 

Figure 3.14. Forest land, rice, agricultural land, grassland and shrubland were the main 
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LULC changes in the Stung Sangkae catchment from 2002 to 2015 and the sum of their areas 

accounted for 99.7% in 2002 and 96.6% in 2015 of the total area. Their contributions to water 

yield were up to about 89% but there was no obvious positive correlation between the area of 

individual LULC changes and their proportional contributions to watershed WY. The forest land 

class includes mainly deciduous, evergreen, and mixed forest, so its water-yielding capacity was 

large up to approximately 39.5%.  

Due to modernization and urbanization, expansions of agricultural land, rice, and 

urban area have decreased the forest land, grassland, and shrubland. Although the area of 

forested land, grassland, and shrubland were decreased much less than that of the agricultural 

land, rice, and urban area, their contributions to catchment WY were slightly changed such 

as an increase of 0.1% forest land, 0.4% grassland, and a decrease of 1.1% shrubland. The 

area of agricultural land was increased about 21.2%, while its water-yielding capacity was 

increased about 0.3%. In contrast, the area of rice was increased approximately 8.6%, but its 

water-yielding capacity was decreased approximately 0.4% In addition, the paddy rice in the 

Stung Sangkae catchment used to grow close and straight row-seeded rice which 

considerably reduce the water yield. Although the area of urban area was extremely modest, 

it was discovered that a growth in urban area was the main reason of increases in runoff by 

comparing the percentage of area of each land use type and their contribution to water yield. 

This is because it had the highest water-yielding capacity due to low intial loss and 

infiltration, as well as rapid rainfall-runoff process. 

Spatial changes in both millimeter and percentage for the mean annual water yield 

caused by LULC changes in this study area were investigated in many of the sub-catchments 

as represented in Figure 3.15 and 3.16. As shown in Figure 3.14, the study demonstrated that 

the most significant increases of mean annual WY mainly occurred in the upstream of Stung 

Sangkae River. The result of mean annual WY in millimeter has increased with the range 

approximately from 425 mm to 837 mm. Figure 3.13 illustrated the mean annual WY in each 

sub-catchment of the upstream and midstream showing the highest mean annual WY with 

the range from 601 mm to 837 mm, while the medium mean annual WY occurred in the 

downstream of the Sangkae river region with the range from approximately 501 mm to 600 

mm and the lowest mean annual WY occurred also mostly in the downstream region with 

the range from 425 mm to 500 mm. Additionally, due to impacts of LULC change in the 

2002-2015 period, the highest mean annual WY changes have increased approximately 17 

mm in the upstream and midstream of Stung Sangkae river, while the medium mean annual 
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WY changes have increased around 1 mm for most sub-catchments in the downstream; 

however the lowest mean annual WY changes have decreased about 16 mm in the sub-

catchment 1, and 6 of the downstream in Stung Sangkae river. Moreover, the SWAT model 

produced the percentage change in some areas of sub-catchment as shown in Figure 3.16. 

The percentage change for mean annual WY has increased in the maximum approximately 

4% for most of upstream and midstream areas in Stung Sangkae River while the mean annual 

WY has increased in the average approximately 0.8%, except some areas have decreased 

approximately 2.5% such as sub-catchments of 1, and 6 in Stung Sangkae catchment. 

 

  

(a) Land use 2002 (b) Land use 2015 

  

(c) WY with land use 2002 (d) WY with land use 2015 

Figure 3.14. Percentage of each LULC change and its contribution to the total average 

annual water yields (WY) for the Stung Sangkae River from 2002 to 2015. 
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Figure 3.15.  Spatial distribution of the mean annual water yield change in millimeter 

for Stung Sangkae catchment 

 

Figure 3.16.  Spatial distribution of the mean annual water yield change in percentage 

for Stung Sangkae catchment 

 

As LULCs changed from 2002 to 2015, the contribution of individual LULC change 

to catchment WY changed too, but the change process was complex, because the WY is an 

integrated result of LULCs, soil, topography, and climate. 
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3.3.5. Impacts of LULC Changes on Hydrology at the Basin Scale 

The average basin values of PCP, PET, ET, SW, and WY simulated from each LULC map 

in 2002 and 2015 are represented in Table 3.9. Compared to the LULC change baseline year of 

2002, the average annual WY over the catchment was 0.2 mm higher in 2010. Similar to WY, 

average annual PET with LULC in 2002 was 1619.9 mm; it increased to 1621.2 mm by 2015. The 

ET increased from 646.5 mm for LULC in 2002 to 648.1 mm for LULC in 2015. On the contrary, 

the average annual SW for LULC in 2015 was 0.1 mm lower than that in 2002. 

Furthermore, compared to the LULC baseline year 2002, the annual PET, ET, and SW for 

each year from 2000 to 2018 for LULC change in 2015 changed in a similar manner as the average 

annual PET, ET, and SW. But in contrast to the size of the average annual WY for LULC in 2002 

and 2015, the annual WY for each year in this period did not increase consistently. For example, 

in years of abundant precipitation, such as 2008 and 2017, the annual WY for the LULC change 

in 2002 was higher than that in 2015. This indicated that the precipitation could affect the impacts 

of the LULC changes on the hydrology in this region. 

The comparison of variations of PET and ET and changes in LULCs suggested that 

the increase of annual PET could be mainly attributed to returning agricultural land and rice 

to forest, grassland, and shrubland and to urban expansion from 2002 to 2015. Further 

comparison between WY changes and LULCs changes showed that the increase in WY was 

mainly due to increased urbanization, which can increase the impervious surface area, 

increase runoff, and reduce infiltration. An association between the decreases of SW and 

agricultural land, rice, and urban area expansion from 2002 to 2015 could be indicated from 

the comparison between variations of average annual SW and changes in LULC from 2002 

to 2015. Loss of forest land, grassland, and shrubland by replacing them with agricultural 

land could promote water infiltration and drainage because of well-developed root systems and 

prevention of infiltration due to increases in the areas of impervious surfaces. 

Spatial changes in both millimeters and percentage for the mean annual actual 

evapotranspiration caused by LULC changes in this study area were investigated in many of 

the sub-catchments as represented in Figures 3.17 and 3.18. As shown in Figure 3.17, the 

study demonstrated that the most significant increases of mean annual ET mainly occurred 

in the downstream of Stung Sangkae River. The result of mean annual ET in millimeter has 

increased with the range approximately from 462 mm to 786 mm. Figure 3.18 illustrated the 

mean annual ET in each sub-catchment of the downstream showing the highest mean annual 

ET with the range from 651 mm to 786 mm, while the medium mean annual ET occurred in 
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the midstream of the Sangkae river region with the range from about 551 mm to 650 mm 

and the lowest mean annual ET occurred also mostly in the upstream region with the range 

from 462 mm to 550 mm. Additionally, due to impacts of LULC change in the 2002-2015 

period, the highest mean annual ET changes have increased about 34 mm in the downstream 

of Stung Sangkae river, while the medium mean annual ET changes have increased around 

9 mm for most sub-catchments in the midstream; however the lowest mean annual ET 

changes have decreased about 17 mm in the sub-catchment 11, 15, and 18 of the upstream 

in Stung Sangkae river. Moreover, the SWAT model produced the percentage change in 

some areas of sub-catchment as shown in Figure 3.17. The percentage change for mean 

annual ET has increased in the maximum about 7.4% for most of downstream areas in Stung 

Sangkae River while the mean annual ET has increased in the average about 2.5%, except 

some areas have decreased approximately 2.3% such as sub-catchments of 11, 15, and 18. 

 

Table 3.9. Annual basin values of hydrologic features for the Stung Sangkae River 

catchment on the different land use from 2000 to 2018 (mm) 

Year PCP 
Scenario with land use in 2002 Scenario with land use in 2015 

PET ET SW WY PET ET SW WY 

2000 1330.3 1531.4 664.4 92.9 675.1 1532.8 664.2 92.9 677.0 

2001 1083.3 1630.3 682.5 95.7 417.3 1631.6 682.5 95.7 418.9 

2002 1199.5 1704.2 630.7 96.4 559.8 1705.4 631.5 96.3 561.2 

2003 1056.9 1660.3 606.2 82.2 466.1 1661.5 608.4 82.2 465.4 

2004 985.8 1630.5 586.9 79.5 388.1 1631.7 588.1 79.3 388.7 

2005 1241.7 1703.7 642.0 98.8 555.7 1704.8 639.4 98.4 560.4 

2006 1207.1 1665.3 681.5 82.5 530.8 1666.5 682.3 82.3 531.5 

2007 1370.4 1635.0 641.2 91.0 697.9 1636.2 641.2 91.1 699.8 

2008 1558.7 1637.7 685.1 94.5 853.4 1639.0 689.0 94.5 851.0 

2009 1291.8 1660.3 665.6 88.9 620.7 1661.5 669.2 88.9 618.7 

2010 1285.0 1643.2 642.6 93.1 620.7 1644.4 643.7 92.9 621.7 

2011 1624.9 1521.3 688.1 89.0 926.3 1522.6 688.9 89.1 926.7 

2012 1441.4 1560.4 686.4 93.7 735.4 1561.8 688.3 93.8 735.4 

2013 1222.8 1537.1 576.7 101.4 627.8 1538.5 580.0 101.3 626.5 

2014 942.2 1599.0 599.3 88.2 347.0 1600.2 598.4 88.0 349.7 

2015 1049.5 1642.2 568.5 94.8 456.3 1643.3 573.8 94.5 453.1 

2016 1192.1 1577.8 610.7 94.4 563.6 1578.8 614.3 94.3 561.7 

2017 1391.9 1618.3 727.3 98.3 642.1 1619.5 729.2 98.3 641.8 

2018 1326.7 1620.5 698.6 97.0 621.5 1621.8 701.9 96.6 620.1 

Mean 1252.7 1619.9 646.5 92.2 595.0 1621.2 648.1 92.1 595.2 

Note: PCP: precipitation; PET: potential evapotranspiration; ET: actual evapotranspiration; SW: soil water; 

WY: water yield. 
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Figure 3.17. Spatial distribution of the mean annual ET change in millimeter for Stung 

Sangkae catchment 

 

Figure 3.18.  Spatial distribution of the mean annual ET change in percentage for Stung 

Sangkae catchment 
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3.3.6. Impacts of LULC Changes on Hydrology at the Subbasin Scale 

Three subbasins (numbers 2, 8, and 15 in Figure 3.1) with noticeable LULC changes 

were selected to analyze the impacts of LULC changes on hydrology at the subbasin scale. 

The results in Table 3.10 shows that the precipitation (PCP) decreased along the stream from 

downstream (No.2), middle stream (No.8) and upstream catchment (No.15). In subbasin 

number 2, the area of agricultural land, rice, forest land, grassland, and urban area increased 

sharply, and the areas of shrubland, and water decreased from 2002 to 2015, which led to 

the decrease of the potential evapotranspiration (PET) and water yield (WY), and in contrast, 

the actual evapotranspiration (ET) increased and soil water (SW) stable. In subbasin number 

8, only the urban area increased, and agricultural land, rice, shrubland, barren, and water 

decreased considerably. Hence, the impacts on hydrology were that ET increased and WY 

and SW decreased. In subbasin, number 15, areas of agricultural land, rice, urban area, 

wetland, and barren increased and forest land, grassland, and shrubland decreased, and WY 

increased, and ET and SW decreased. By comparing the LULC changes and their 

hydrological responses in these three sub-basins, the obvious LULC changes may not show 

a clear hydrological impact, meaning that different combinations of the LULC can produce 

similar hydrological effects. In addition, the impacts of the same LULC changes on 

hydrology may vary under conditions of different precipitation intensity and distribution. 
 

Table 3.10.  LULC changes and average annual hydrologic features from 2000 to 2018 

Subbasin Number 2 Number 8 Number 15 

LULC scenario 2002 2015 2002 2015 2002 2015 

Total area (ha) 3634.8 3634.8 4397.1 4397.1 45216.5 45216.5 

Agricultural land (%) 3.30 7.23 50.06 0.00 0.51 32.98 

Rice (%) 0.16 5.37 37.61 28.80 11.44 34.94 

Forest land (%) 0.00 40.97 0.00 0.00 56.16 19.38 

Urban area (%) 0.00 0.03 9.47 68.51 0.00 1.77 

Grassland (%) 8.16 19.12 0.00 0.00 18.60 0.17 

Shrubland (%) 87.13 26.16 0.03 0.00 12.32 9.53 

Wetland (%) 0.00 0.00 0.00 0.00 0.00 0.04 

Barren (%) 0.00 0.00 0.03 0.00 0.00 0.21 

PCP (mm) 1245.0 1245.0 1242.4 1242.4 1174.7 1174.7 

PET (mm) 1725.5 1724.5 1731.7 1731.0 1791.9 1791.9 

ET (mm) 594.8 602.1 786.4 792.7 721.3 704.6 

SW (mm) 43.7 43.7 145.2 144.7 119.8 119.4 

WY (mm) 636.5 627.7 453.4 445.9 425.1 442.0 



  

81 

3.3.7. Impacts of LULC Changes on Soil Erosion in the Catchment 

Stung Sangkae catchment was divided into 19 sub-basins (Figure 3.19). After the 

calibration and validation processes, the SWAT model was executed for 19 years (2000-

2018) to estimate the soil erosion in each sub-basin for both scenarios with land use in 2002 

and 2015. As shown in Table 3.11, the average annual values recorded of soil loss at the 

Stung Sangkae catchment were approximately 12.0 t/ha/yr and 21.8 t/ha/yr for the 2002 and 

2015 periods, respectively. Based on the results presented in Figure 3.19, most sub-basins 

show a low (2-5 ton/ha) to moderate (5-10 ton/ha) sediment yield for both scenarios. The 

sub-basin 16, 18, and 19 increased the sediment yield from a low to a high erosion rate, 

especially sub-basin 16. This was because the agricultural land was expanded from 2002 to 

2015. 

 

Table 3.11.  Mean annual soil loss from 2000-2018 of Stung Sangkae catchment  

Year Flow (m3/s) 

Scenario with land use in  

2002 

Scenario with land use in 

2015 

Soil loss (t/ha/yr) Soil loss (t/ha/yr) 

2000 61.4 11.9 21.9 

2001 37.1 3.3 5.4 

2002 51.6 13.4 23.5 

2003 41.3 12.4 21.9 

2004 35.8 8.1 14.0 

2005 50.1 11.5 20.9 

2006 50.6 13.0 21.4 

2007 64.2 17.9 37.5 

2008 72.3 18.3 26.0 

2009 65.8 8.6 16.5 

2010 62.3 19.2 23.5 

2011 87.5 13.4 22.6 

2012 85.2 13.8 27.2 

2013 54.9 22.1 33.4 

2014 35.8 6.5 14.9 

2015 41.9 9.2 22.1 

2016 94.1 7.8 18.0 

2017 75.8 10.1 22.5 

2018 97.3 7.1 21.9 
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Figure 3.19. Spatial distribution of estimated soil erosion rates (t/ha/yr) at Stung 

Sangkae catchment 

 
Figure 3.19 shows that the soil erosion was significantly affected by the LULC changes, 

particularly at the upstream catchment of sub-catchment 11-19, even though the streamflow 



  

83 

was not significantly changed from 2022 to 2015. The finding was reasonable with the corn 

field experiment of 10.45 to 41.89 tons/ha in 2019 (CARDEC, 2019).  

  

3.4. Conclusions of This Chapter 

In this chapter, we investigated the impacts of LULC changes on hydrological 

responses in Cambodia’s Stung Sangkae River catchment. The catchment experienced 

significant changes in the LULC over the 18-year interval from 2002 to 2015. The main land 

use changes were the transformations of forested area, shrubland, and grassland to 

agricultural land, rice, and urban area increased at the expense of cropland. These changes 

were due to implementation of catchment management measures and social and economic 

development. For the contribution of each LULC to the total WY of the catchment, the 

forested area, shrubland, and grassland were the main contributors, with up to about 40%, 

12%, and 13%, respectively. The land use that generated the most significant water yield 

was agricultural activities and urban area, higher than any other land use type, followed by 

forested area, shrubland, and grassland.  

For both reference land uses (2002 LULC and 2015 LULC), the sensitive parameters 

of stream flow were the same, although the sensitivity rank of the same parameters varies. 

Therefore, these calibrated parameters can be used for further future hydrological and 

environmental studies in the Stung Sangkae River catchment without needing to do 

sensitivity analysis. Moreover, the applicability of the SWAT model in simulating stream 

flow dynamics of Stung Sangkae River catchment has been validated based on the 

satisfactory values of the statistical measures of the model efficiency (R2 = 0.58, NSE = 0.55, 

and PBIAS = 5 if included dam construction and R2 = 0.64, NSE = 0.62 and PBIAS = 15 if 

exclude dam construction). Therefore, the model simulation results provide confidence for 

the further application of the model to assess the hydrologic response analysis due to spatial 

and temporal variability of the catchment characteristics will have minimal bias within the 

Stung Sangkae River catchment. 

The soil erosion map obtained by the hydro-agricultural model (SWAT) also shows 

that 74.5 % of the surface area of the Stung Sangkae catchment is exposed to a low to 

moderate risk of erosion (<10 t/h/y) and 17.4% basin is at severe risk. The most affected 

areas are located in the west of the catchment, where the upland agriculture was expanded. 

The results of soil loss SWAT model is higher.   
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However, based on the evaluation, accompanying the LULC changes in the Stung 

Sangkae catchmnet, increases in PET, ET, and WY indicated that soil and water 

conservation practices increased stream flow, while the expansion of the agricultural land, 

rice, and urban area increased the ET and WY. 

Moreover, the approach used in this research simply evaluates contributions of 

individual LULC classes to the total hydrological responses, providing quantitative 

information for decision-makers to make better options for land and water resource planning 

and management. This approach also provides a solid example of the potential of hydrologic 

modeling using remotely sensed digital LULCs in understanding the impacts of landscape 

change on water provisioning, a vital ecosystem service in the Stung Sangkae of Cambodia. 

It can be widely applied to a variety of catchments, where time-sequenced digital land cover 

data are available, and to predict hydrological consequences to LULC changes. 
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CHAPTER 4 

Impact of Land Use and Land Cover Changes on Soil Erosion in      

Stung Sangkae Catchment Using RUSLE Model 

 

4.1. Introduction 

Soil erosion is a major environmental and economic concern in most parts of the 

world  (Ozsahin et al., 2018; Pimentel and Burgess, 2013; Chuenchum et al., 2019; 

Benavidez et al., 2018) and poses a threat to land, freshwater, and oceans (Borrelli et al., 

2020). This threat may result in low agricultural productivity (Mihara et al., 2005), 

ecological degradation, and high sedimentation (Chuenchum et al., 2019; Pham et al., 2018; 

Bonilla et al., 2010). According to Marondedze and Schütt (2020), the estimated average 

soil erosion rate globally ranges between 12 and 15 t/ha/y and almost 84% of global soil loss 

results from soil erosion processes. 

It is estimated that the average soil erosion by water exceeds 2000 t/km2/y, which 

mainly occurs on croplands in tropical areas (Chuenchum et al., 2019; Van Oost et al., 2007). 

It is reported that soil erosion caused by human activities is 10–15 times higher than any 

natural process (Wilkinson and McElroy, 2007). For instance, approximately 80% of 

cultivated areas worldwide face high to severe erosion. The number of generated sediments 

can increase waterways' turbidity and impurities' concentration (Tang et al., 2014). 

Furthermore, soil erosion and sediment yield can severely affect people and the environment 

if the quantity of sediment exceeds the value of the typical measurement of aquatic 

organisms. Soil erosion is the central part of the early development of sediment conveyance 

to streams. In this early development process, evacuated soil particles are converted into 

sediments due to the effect of the erosion agent (Chuenchum et al., 2019). Rainfall, 

topography, soil characteristics, vegetation or land cover changes, cropping systems, and 

land management practices are the main fundamental factors causing the rate and severity 

of soil erosion (Panagopoulos et al., 2019; Kogo et al., 2020).  

In the past, soil erosion studies were done through physical field assessments (Mihara 

et al., 2005). It was more challenging, costly, and unfeasible to do mapping of soil erosion 

risks in huge spatial areas with complex environments in most cases (Kogo et al., 2020; Chen 

et al., 2011). However, even though it is challenging, field-based assessments are needed to 

provide accurate and reliable data, which are essential for calibrating and validating results 
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from soil loss models (Mihara et al., 2005; Evans, 2002; Evans and Brazier, 2005). 

Previously, soil loss and erosion risk mapping has been assessed using altered empirical and 

stochastic models at local and global levels (Renschler and Harbor, 2002). A review study 

by Benavidez et al. (2018) summarized 35 previous studies that have applied the USLE 

(Universal Soil Loss Equation) and RUSLE (Revised Universal Soil Loss Equation) from 

1988 to 2017. The review identified modeling techniques developed and used to study soil 

loss from a field, a hill slope, or a catchment/watershed and discussed the different sub-

factors of USLE and RUSLE, and analyzed how various studies around the globe have 

adapted the equations to local environments (Benavidez et al., 2018). These models have 

different geomorphological parameters that vary in extent and period of application, 

manipulating factors, processes, features examined, algorithms used, and type of assessment. 

Among the models, RUSLE by Renard et al. (1997), which is used to estimate sheet and rill ero-

sion of annual soil loss per unit land area, has arisen as the most widely and globally used model.  

A wide range of empirical, conceptual, and physical-based models have been 

developed to estimate soil loss risks. These models vary in complexity, data requirements, 

consideration processes, and calibration (Marondedze and Schütt, 2020; Merritt et al., 2003; 

Raza et al., 2021). Empirical models such as USLE, MUSLE and RUSLE are primarily based 

on observed data and the relationships between different factors and soil erosion levels. The 

empirical models require relatively fewer input data than conceptual or physical-based 

models. Thus, empirical models are often used when there is a limitation in data availability. 

Most empirical models do not provide information about the deposition of stream 

sedimentation, which limits their application in modeling mass balance (Raza et al., 2021). 

According to Stefanidis et al. (2021), the most commonly used empirical erosion model is 

USLE, and the revised version is RUSLE. The main advantages of the USLE/RUSLE model 

are flexibility, data availability, and extensive literature research, making this method 

suitable for almost all types of conditions and environments (Alewell et al., 2019). Conceptual 

models, such as Agricultural Policy/Environmental eXtender (APEX) and Soil and Water 

Assessment Tool (SWAT), are primarily based on sediment and runoff continuity equations and 

essentially are hybrids of physical-based and empirical models (Beck, 1987). Most of the 

conceptual models use equations from empirical approaches. For instance, empirical models like 

USLE and MUSLE are carried out in APEX and SWAT to estimate soil erosion. Physical-based 

models such as Environmental Policy Integrated Climate (EPIC), APEX, and Water Erosion 

Prediction Project (WEPP), are more capable of responding to event-based or continuous storms 
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to simulate surface runoff, soil detachment, transportation, and sediment yield (Raza et al., 2021). 

For example, the EPIC model considers the effect of several best management practices (BMPs) 

related to crop, soil, and nutrient management on soil erosion and soil productivity. 

Recently, due to climate change which causes climate variation in some parts of the 

world, particularly rainfall patterns, this will increase and enhance soil erosion, especially in 

areas where land use changes occur. Rainfall erosivity is the potential ability of rain to cause 

erosion (Reyes et al., 2004), and it is a major driving force of soil erosion and nutrient losses 

worldwide, which may leave farmers vulnerable to crop failures. The rainfall erosivity, 

derived from 30-min or daily rainfall events, is characterized by a large variability in space 

and time (Bezak et al., 2020; Panagos et al., 2017). This may lead to inaccurate estimates of 

soil erosion. However, daily rainfall amount is the simplest erosivity factor and it may poorly 

explain the amount of soil loss (Wischmeier and Smith, 1978) because erosivity is also a 

function of the raindrop’s diameter, mass, and velocity. In most countries, soil loss 

measurement is not available. Therefore, an erosivity index cannot be determined 

empirically (Reyes et al., 2004). The impact of future climate change on soil erosion 

susceptibility can be estimated by calculating the predicted R-Factor value. The spatial 

correlation between climate change, soil erosion, and land cover change using global models, 

such as RUSLE, can effectively assist in the spatial management process (Hateffard et al., 

2021). 

Soil erosion changes in the future can be done by developing modeling scenarios of 

the two most dynamic factors in soil erosion, i.e., rainfall erosivity and land cover change 

Panagos et al., 2017). Currently, it is believed that large-scale estimation of soil loss rates 

under climate change conditions is possible. According to Panagos et al. (2017), predicting 

soil erosion changes in the future mainly depends on modeling future rainfall erosivity, land 

use changes, and impacts of policies on soil loss. Recently, developing the Rainfall Erosivity 

Database at European Scale (REDES) and statistical methods for spatially interpolating 

rainfall erosivity data can become valuable insights for predicting future rainfall erosivity 

based on climate scenarios (Bezak et al., 2020). Using a comprehensive statistical modeling 

method (Gaussian Process Regression) will help to predict rainfall erosivity according to 

climate change scenarios by selecting the most appropriate covariates (monthly precipitation, 

temperature datasets, and bioclimatic layers (Panagos et al., 2017). Extreme rainfall will be 

more intense, and natural disasters will be related to more frequent rain; as a result, soil 

erosion rates are expected to increase in response to climate change (Borrelli et al., 2020; 
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Stefanidis et al., 2021). Moreover, climatologists have discovered that the earth is warming, 

and as the global temperature rises, the water cycle becomes more vigorous. Therefore, it is 

clear that climate change will affect soil erosion and its consequences (Stefanidis and 

Chatzichristaki, 2017). 

Thus, the overall goal of this chapter was to evaluate the land use and land cover 

changes and their impact on soil erosion in Stung Sangkae catchment in 2002 and 2015. The 

study's specific objectives were to: (1) estimate the magnitude of annual soil erosion and its 

spatial distribution in the catchment; and (2) evaluate how land use and land cover types 

contributed to soil erosion in the catchment. The results of this study are expected to provide 

useful information that can promote soil erosion management practices in Stung Sangkae 

Catchment, Battambang Province, as well as Tonle Sap Great Lake, which represents one of 

the world’s most productive ecosystems and biodiversity. The Tonle Sap River-Great Lake 

system underpins the world’s biggest freshwater fishery and directly or indirectly affords a 

livelihood for most of Cambodia’s population (MRC, 2005). 

 

4.2. Materials and Method 

4.2.1. Description of Study Area 

The Stung Sangkae catchment (605,170 ha), which is the third-largest tributary of the 

Tonle Sap Basin river system, is located at the upper north-western part of Cambodia 

between 12°13′–13°24′ N and 102°35′–103°42′ E (Figure 3.1). The topography is level 

within the floodplain region and rough with slopes at the upland portion of the catchment, 

having elevations extending from 4 m at the most reduced point to 1,413 m a.s.l at the most 

noteworthy point. The main river that flows through the catchment, Sangkae River, lies 

between the tributaries of the Tonle Sap Great Lake in the upper western part of the 

catchments. Agriculture is the main local economic activity and the main source of 

livelihood. Meteorological data collected from six weather stations in 2007–2018 showed 

that the average annual precipitation in the study area varied from 1308 mm at Moung Rues-

sei station to 1,577 mm at Samlout station, with little change during the year (Figure 4.2). 

The major soil types in the region are categorized into 4: (1) Gleysols are wetland soils, 

which in the natural state are continuously water-saturated within 50 cm of the surface for 

extended periods; (2) Luvisols are a type of soil in which highly active clay migrates from 

the top part of the profile, usually gray, and is deposited in the B layer, usually brown; (3) 
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Nitisols are mainly deep, well-drained soils with a stable structure and high nutrient content; 

and (4) Acrisols are clay-wealthy soils which can be fairly vulnerable to erosion. 

 

 

Figure 4.1. Location map of the research catchment and meteorological stations 

within the research area 

 

Figure 4.2. The distribution of annual rainfall recorded by weather stations inside 

and around the study catchment during 2007–2018 
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The catchment is characterized by distinctive topographical conditions, from flat 

plains to rugged areas. After dividing the digital elevation model (DEM) into six FAO slope 

grades (FAO, 2006); 16.6% of the total area has very gently sloping (0–2°), whereas 35.2% 

and 28.3% of the entire areas are characterized as gently sloping (2–5°) and sloping (5–10°). 

The remaining land slopes are divided into strongly sloping, moderately steep, and steep, 

which covered areas of 9.8% (10–15°), 9.1% (15–30°), and 1.0% (>30°), respectively (Table 

4.1). 

Table 4.1. FAO slope classification in the study catchment and related susceptibility 

to soil erosion 

No 

Slope 

Classes 

(Degree) 

Characteristics Susceptibility 

Area 

(ha) (%) 

1 0–2 
Flat to very gently 

sloping 
Very low  100,579 16.6% 

2 2–5 Gently sloping Low 212,830 35.2% 

3 5–10 Sloping Medium 171,084 28.3% 

4 10–15  Strongly sloping High 59,375 9.8% 

5 15–30 Moderately steep Very high 55,173 9.1% 

6 >30 Steep Extremely high 6129 1.0% 

 

The land use developed by the Japan International Cooperation Agency (JICA) in 2002 (JICA, 

2003) and land cover (Land Cover Maps of LMB) developed by Mekong River Commission 

(MRC) in 2015 (MRC, 2015) were used in the study (see Table 4.2 and Figure 4.3). The land 

cover maps of the Lower Mekong Basin, which covers the Lower Mekong countries such as 

Cambodia, Lao PDR, Thailand and Vietnam, was developed by MRC following the FAO Land 

Cover Classification System based on the target surveyed points and the satellite image 

classifications. In Cambodia, the number of target surveyed points were 2595 points 

(Kityuttachai et al., 2016). However, due to site conditions, not all points could be inspected; 

only 9357 points were collected from field data, which accounted for 89% of the target (10,575 

points). The samples covered all 19 land cover types. This approach would have resulted in 

12,825 samples for the entire LMB. However, the targeted sample size was reduced to 10,575 

samples; as a result, only 9357 samples were collected on-site. 
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Table 4.2. Land use and land cover of the Stung Sangkae catchment in 2002 and 2015 

 JICA 2002 MRC 2015 Net Change 

LULC Classes 
Area  

(ha)  

Area  

(%) 

Area  

(ha)  

Area  

(%) 

Area  

(ha)  

Area  

(%) 

Agricultural land 25,627.2 4.24 152,742.3 25.24 127,115.0 21.00 

Barren land 149.2 0.02 274.0 0.04 124.8 0.02 

Built-up area 1,702.8 0.28 20,870.1 3.45 19,167.3 3.17 

Deciduous forest 74,524.7 12.31 24,144.9 3.99 −50,379.8 −8.32 

Evergreen forest 110,474.4 18.26 90,338.0 14.93 −20,136.4 −3.33 

Grassland 79,496.0 13.14 29,394.2 4.86 −50,101.8 −8.28 

Marsh and swamp 280.3 0.05 35.8 0.01 −244.6 −0.04 

Mixed forest 75,361.5 12.45 64,710.9 10.69 −10,650.6 −1.76 

Paddy field 92,784.8 15.33 144,931.5 23.95 52,146.7 8.62 

Shrubland 141,689.0 23.41 74,019.0 12.23 −67,670.0 −11.18 

Water bodies 3,080.1 0.51 3,709.4 0.61 629.3 0.10 

Total 605,170.0 100.00 605,170.0 100.0   

 

 

Figure 4.3.  Land use and land cover (LULC) developed by JICA 2002 and MRC 2015 

of the Stung Sangkae catchment 

 

 

From the land use and land cover assessment in Table 4.2, cultivated lands (agricultural 

land and paddy rice fields) occupied almost 50% of the total land area in the region in 2015, 

which increased from 20% in 2002, while forest cover (evergreen, deciduous and mixed forest) 
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occupied 43% in 2002 and declined to 30% in 2015. Among the land use and land covers, areas 

under agricultural land increased from 4.24% to 25.24%, which is the highest compared to others, 

followed by paddy rice fields that increased from 15.33% to 23.95% between the years 2002 

and 2015. The built-up areas also increased from 0.28% in 2002 to 3.45% in 2015, while water 

bodies also increased slightly from 0.51% to 0.61% between 2002 and 2015. On the contrary, 

evergreen forest, deciduous forest, mixed forest, grassland, shrubland and marsh and swamp 

areas decreased from 18.26%, 12.31%, 12.45%, and 23.41% in 2002 to 14.93%, 3.99%, 10.69%, 

4.86% and 12.23% in 2015, respectively. 

 

4.2.2. Description of RUSLE Model  

The Revised Universal Soil Loss Equation (RUSLE) is a well-known and widely 

accepted and implemented empirical model for estimating soil erosion. The RUSLE, an 

empirical model, is simple and the most commonly used computerized version of the 

Universal Soil Loss Equation (USLE), a statistical model developed to estimate annual soil 

loss per unit area based on erosion factors (Renard et al., 1997). The RUSLE model has been 

widely used to predict average annual soil losses caused by sheet and rill erosion and to 

display the spatial distribution of potential erosion risk.  

The empirical models such as USLE (Wischmeier and Smith, 1978), MUSLE 

(Williams and Berndt, 1977) and RUSLE (Renard et al., 1997) are mostly based on observed 

data and the relationships between different factors and soil erosion levels. The empirical 

models require considerably less input data compared to conceptual or physical-based 

models. Thus, the empirical models are often used when there is a limitation of data 

availability. Most empirical models do not provide information about deposition of stream 

sedimentation which limits their application in modeling mass balance (Raza et al., 2021). 

According to Stefanidis et al., (2021) the most commonly used empirical erosion model is 

USLE (Wischmeier and Smith, 1978), and the revised version RUSLE (Renard et al., 1997). 

The main advantages of the USLE/RUSLE model are flexibility, data availability and 

extensive literature research, making this method suitable for almost all types of conditions 

and environments (Alewell et al., 2019). 

The principal equation for the USLE model family (Wischmeier and Smith, 1958 and 

1978) is below: 

𝑨 = 𝑹 × 𝑲 × 𝑳 × 𝑺 × 𝑪 × 𝑷 (1) 
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where A is mean annual soil loss (metric tons per hectare per year), R is the rainfall and 

runoff factor or rainfall erosivity factor (megajoule millimeters per hectare per hour per year), 

K is the soil erodibility factor (metric ton hours per megajoules per millimeter), L is the slope 

length factor (unitless), S is the slope steepness factor (unitless), C is the cover and 

management factor (unitless), and P is the support practice factor (unitless). 

The USLE was initially developed at the farm-plot scale for agricultural land in the 

United States of America, but has seen use in many other countries, at many different scales, 

and in many other geoclimatic regions. Although the name implies that the model can be 

applied to all soils, the original USLE is more accurate for soils of medium texture and slopes 

less than 400 ft in length with a gradient ranging between 3% and 18%, and it is managed 

with consistent cropping practices that are well represented in plot-scale erosion studies 

(Wischmeier and Smith, 1978). Hence, applying the USLE family of models to soils and 

sites exceeding these limits requires careful parameterisation of the model and being mindful 

of the increased uncertainty in model predictions. 

In the original development of the model, this farm plot is called the “unit plot” and is 

defined as a plot that is 22.1 meters long, 1.83 meters wide, and has a slope of 9% 

(Wischmeier and Smith, 1978). Although the model accounts for rill and interrill erosion, it 

does not account for soil loss from gullies or mass wasting events such as landslides (Thorne 

et al., 1985). 

 

4.2.2.1. Rainfall Erosivity Factor (R) 

The R factor represents the effect that precipitation has on soil erosion and was 

included after observing sediment deposits after an intense storm (Wischmeier and Smith, 

1978). The annual R factor is a function of the mean annual EI30 that is calculated from 

detailed and long-term records of storm kinetic energy (E) and maximum 30 min intensity 

(I30) (Morgan, 2005; Renard et al., 1997). Due to the detailed data requirements for the 

standard (R)USLE calculation of rainfall erositivity, studies in areas with less detailed data 

have used alternative equations depending on the temporal resolution and availability of the 

rainfall data. These compiled studies have used long-term datasets with at least daily 

temporal resolution to construct their R-factor equation. Extensive work by Naipal et al. 

(2015) attempted to apply the (R)USLE at a coarse global scale (30 arcsec) by using USA 

and European databases to derive rainfall erosivity equations. These equations use a 

combination of annual precipitation (millimeters), mean elevation (meters), and simple 
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precipitation intensity index (millimeters per day) to calculate the R factor for different 

Köppen–Geiger climate classifications (Naipal et al., 2015). Loureiro and Coutinho (2001) 

used 27 years of daily rainfall data from Portugal and the (R)USLE method of calculating 

EI30 to construct an equation that uses the number of days that received over 10mm of rainfall 

and the amount of rainfall per month when the day’s rainfall exceeded 10 mm. The Loureiro 

and Coutinho (2001) equation was modified by Shamshad et al. (2008) for use in tropical 

Malaysia by using long-term rainfall data to construct a regression equation relating monthly 

rainfall and annual rainfall with the R factor. 

Similarly, Sholagberu et al. (2016) used 23 years of daily rainfall data to create a 

regression equation relating annual rainfall and the R factor for the highlands of Malaysia. 

These simplified equations may be transferable to areas of similar climate that do not have 

the long-term detailed rainfall data required by the original (R)USLE. The imperial units of 

erosivity are in hundreds of foot tonforce (tonf) inch per acre per hour per year, and 

multiplying by 17.02 will give the SI units of megajoule millimeter per hectare per hour per 

year (Renard et al., 1997).  

In tropical areas such as Southeast Asia, the R factor by El-Swaify et al. (1987) as cited in 

Merritt et al. (2004) was used extensively in Thailand, the Philippines, and Sri Lanka. However, 

the units for the R factor in this equation are given as metric tons per hectare per year, which do 

not correspond to the original units used by (R)USLE (Merritt et al., 2004). This lack of 

consistency regarding units is not uncommon in the reviewed literature, which sometimes fails 

to explicitly report the units used for the different factors. For example, Renard and Freimund 

(1994) report that the units of R-factor equations by Arnoldus (1977) were presumed to be in 

metric units. By being clear and consistent about units in the (R)USLE literature, future 

researchers can be more certain about the accuracy of their borrowed R-factor equations instead 

of presuming the units to be the same as the original (R)USLE.  

The usage of monthly precipitation data to determine the R factor is due to monthly 

rainfall data being more readily available compared to detailed storm records (Renard and 

Freimund, 1994). Although annual rainfall estimates are sufficient, using monthly rainfall 

data to construct sub-annual R factors and then aggregating those R factors to an annual 

scale is useful in sites with large temporal variability in rainfall. Renard and Freimund (1994) 

used data from 155 stations with known R factors based on the original USLE approach and 

related their R factors to observed annual and monthly precipitation. These equations 

developed by Renard and Freimund (1994) on the west coast of USA were used in Ecuador 
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(Ochoa-Cueva et al., 2015), and Honduras and El Salvador (Kim et al., 2005). Work by 

Arnoldus (1980) developed R-factor equations in West Africa that use monthly and annual 

precipitation. However, as described earlier, these equations present a problem in terms of 

consistent units. In Southeast Asia, Shamsad et al. (2008) developed an R-factor equation in 

Malaysia that was used in the Philippines by Delgado and Canters (2012). In New Zealand, 

the monthly precipitation can be aggregated to seasonal precipitation and used in the 

equation for seasonal R factor derived by Klik et al. (2015).  

Monthly or better precipitation records are very useful in (R)USLE applications 

because of the option of estimating soil loss at a monthly or seasonal scale, which can be 

useful in countries with high temporal variation of rainfall throughout the year. Monthly and 

seasonal erosion has been estimated by varying the R factor depending on the monthly 

precipitation while leaving all the other factors constant (Ferreira and Panagopoulos, 2014; 

Kavian et al., 2011). Klik et al. (2015) emphasized the need to understand the drivers of soil 

erosion, including whether rainfall intensity had a stronger effect compared to mean annual 

rainfall. In an assessment of spatial and temporal variations in rainfall erosivity over New 

Zealand, December and January were associated with higher erosivities, while August was 

associated with lowest erosivity (Klik et al., 2015). Similar work by Diodato (2004) has cited 

the use of monthly erosivity data to be more useful with respect to managing crop growing 

cycles and tillage practices, especially during seasons where high rainfall erosivity is 

expected. In locations where there is a large temporal variation in rainfall throughout the 

year, the seasonal approach of estimating soil erosion is more important for sustainable land 

management (Ferreira and Panagopoulos, 2014). 

In summary, there are many rainfall erosivity datasets and equations in the (R)USLE 

literature that can be used by new researchers applying the RUSLE to their study area (Table 

4.3). The erosivity dataset produced by Panagos et al. (2017) is recommended for areas with 

no rainfall data or in ungauged catchments since this is a raster dataset with global coverage 

( ̴ 30 arcsec resolution) and is freely available. For areas in the European Union, work by 

Panagos et al. (2015a) has produced a rainfall erosivity map with regional coverage at ( ̴ 1 

km resolution. These datasets can also be used to validate the erosivity factors calculated at 

the national or catchment scale. For study areas in which annual precipitation and the 

Köppen–Geiger classification are known, Naipal et al. (2015) has published rainfall erosivity 

equations and values for 17 different climate zones. Several studies have published erosivity 

equations for tropical areas: da Silva (2004) for Brazil, Shamshad et al. (2008) for Malaysia, 
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and Jain and Das (2010) for India. For arid areas, Arnoldus (1980) as cited in Renard and 

Freimund (1994) has derived erosivity equations for Morocco and other locations in West 

Africa. Many other equations are found in Table 4.3, and choosing several for sensitivity testing 

is recommended for future (R)USLE applications. It is also important to test against observed data 

or R factors derived by previous applications in the same study area or in study areas with similar 

climatic regimes. 

 

Table 4.3. Summary of some different studies that developed rainfall erosivity 

equations, original locations, and other studies that used their equations 

No. Author 
Original 

location 
Resolution Equation and requirements 

1 Fernandez et al. (2003), 
originally developed by 

the USDA-ARS (2002) 

USA Annual R = −823.8 + 5.123𝑃 
P: annual precipitation 

Units: MJ mm ha-1 h-1 year-1 

2 Nakil (2014) as cited in 

Nakil and Khire (2016) 

India Annual R = 839.15 + 𝑒0.0008𝑃 
P: annual precipitation 

Units: MJ mm ha-1 h-1 year-1 

3 Land Development 
Department (2000) as 

cited in Nontananandh 
and Changnoi (2012) 

Thailand Annual R = 0.04669P − 12.1415 
P: mean annual precipitation 
Units: MJ mm ha-1 h-1 year-1 

4 Renard and 
Freimund 

(1994) 

West coast 
of USA 

Monthly 
and annual 

𝑅 = 0.0483 × 𝑃1.610 
𝑅 = 587.8 − 1.219𝑃 +
0.004105 𝑃2  
Using MFI (Arnoldus, 1980): 
𝑅 = 0.07397 × MFI1.847 
𝑅 = 95.77 −  6.081MFI +
0.4770MFI2  

MFI =∑
𝑃𝑖
2

𝑃

12

𝑖=1

 

MFI: modified Fournier index 

𝑃𝑖: monthly precipitation  
P: annual precipitation  
Units: MJ mm ha-1 h-1 year-1 

5 Zhou et 
al. (1995) 

as cited in Li et al. 

(2014) 

Southern 

China 
Monthly 

𝑅 =∑−1.15527 + 1.792𝑃𝑖

12

𝑖=1

 

𝑃𝑖: monthly precipitation  
Units: MJ mm ha-1 h-1 year-1 

6 Roose (1975) 
and Morgan 

(1974) as cited in 

Morgan 
(2005) 

Peninsular 
Malaysia 

and 
Africa 

Annual Africa (Roose, 1975): 

𝑅 = 0.5 × 𝑃 × 17.3 
Peninsular Malaysia:  

𝑅 = (9.28 × 𝑃 − 8838) (
75

1000
) 

𝑃: mean annual precipitation (mm)  
Units: MJ mm ha-1 h-1 year-1 
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7 El-Swaify et al. (1987) 

as cited in Merritt 
et al. (2004) 

Possible 

USA 
Annual R = 38.5 + 0.35 P 

P: mean annual precipitation 
Units: MJ mm ha-1 h-1 year-1 

8 Hurni (1985) Ethiopia Annual R = 0.562P − 8.12 
P: mean annual precipitation 
Units: MJ mm ha-1 h-1 year-1 

 

4.2.2.2. Soil Erodibility Factor (K) 

The K factor represents the influence of different soil properties on the slope’s 

susceptibility to erosion (Renard et al., 1997). It is defined as the “mean annual soil loss per 

unit of rainfall erosivity for a standard condition of bare soil, recently tilled up-and-down 

slope with no conservation practice” (Morgan, 2005). The K factor essentially represents the 

soil loss that would occur on the (R)USLE unit plot, which is a plot that is 22.1m long, is 

1.83m wide, and has a slope of 9% (Lopez-Vicente et al., 2008). 

The values of the K-factor are in the range from 0 to 1. Higher K-factor values indicate 

the soil’s higher susceptibility to soil erosion by water (Adornado et al., 2009). In the 

(R)USLE, Wischmeier and Smith (1978) and Renard et al. (1997) use an equation that relates 

textural information, organic matter, information about the soil structure, and profile 

permeability with the K factor or soil erodibility factor. However, other soil classifications 

might not include soil structure and profile permeability information that matches the 

information required by (R)USLE nomograph. Hence, alternative equations have been 

developed that exclude the soil structure and profile permeability (Table 4.3). The question 

of which equation to use depends on the availability of soil data. Where only the textural 

class and organic matter content are known, Stewart et al. (1975) have approximated K-

factor values based on these inputs. Like the R factor, the imperial units of soil erodibility 

are in ton acre hour per hundreds of acres per foot per tons per inch. Multiplying by 0.1317 

gives the erodibility in SI units of metric tons hectare hour per hectare per megajoule per 

millimeter (Renard et al., 1997). 

Although seemingly relatively straightforward, the K- factor equation proposed by 

Wischmeier and Smith (1978) has a few soil type limitations. This equation was developed 

using data from medium-textured surface soils in the Midwestern USA, with an upper silt 

fraction limit of 70% (Renard et al., 1997). An equation for volcanic soils in Hawaii was 

proposed by El-Swaify and Dangler (1976) as cited in Renard et al. (1997) but is only 

appropriate for soils similar to Hawaiian soils and not for all tropical soils. Despite these 

limitations, many studies outside the USA have used the original Wischmeier and Smith 
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(1978) K-factor equation. Being aware of the regional specificity of K-factor equations is 

important, and using different K-factor equations in one study area to find a range of soil 

erodibility could be a way of testing their applicability. 

Similar to the sensitivity analysis of the R-factor equations, testing different K-factor 

equations to see the variation in erodibility values and then comparing these K factors with 

published values from similar soils would be a good way to test applicability. For the spatial 

coverage of the European Union, a soil erodibility raster dataset (500m resolution) is 

available for validation (Panagos et al., 2014). David (1988) and Dymond (2010) have 

published K-factor values for soils of different textural classes (e.g. clay, loam) that can be 

used if only soil texture is known (Table 4.4 and 4.5). However, the values published by 

Dymond (2010) are broad and do not account for soils with mixed texture, while the values 

of David (1988) are based on soils in the Philippines. Like the R factor, it is important to 

check the derived K-factor values for the site-specific soil against previously published K-

factor values for comparable sites and soil types. 

 

Table 4.4. Summary of different studies with soil erodibility equations, original 

locations, and other studies that used their equations  

No. Author 
Original 

location 
Data 

requirements 
Equation  

1 Wischmeier 
and Smith 
(1978) and 
Renard et 
al. (1997) 

USA Very fine 

sand (%), 
clay (%),  
silt (%), 
organic 

matter (%), 
soil structure, 

profile 
permeability 

𝑀 = Silt × (100 − Clay) 
𝐾 = {[2.1 × 𝑀1.14 × (10−4) × (12 − 𝑎)] +
[3.25 × (𝑏 − 2)] + [2.5 × (𝑐 − 3)]} ÷ 100  
M: Particle-size parameter 
Silt: silt (%) as well as the percentage of very 

fine said (0.1 to 0.05 mm) 
Clay: clay (%) 
a: organic matter (%) 
b: soil structure code used in soil classification: 
1: Very fine granular 
2: Fine granular 
3: Medium or coarse granular 
4: Blocky, platy, or massive 
c: profile permeability class: 
1: Rapid 
2: Moderate to rapid 
3: Moderate 
4: Slow to moderate 
5: Slow 
6: Very slow 

2 Williams 

and Renard 

(1983) as 

USA Sand (%),  
silt (%), 

𝐾 = 0.2 + 0.3 exp (0.0256 × Sa × (1 −

𝑆𝑖

100
)) × (

𝑆𝑖

𝐶𝑙+𝑆𝑖
)
0.3
× (1.0 −
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cited in 

Chen 
et al. 

(2011) 

clay (%), 

organic 

carbon (%) 

0.25×𝐶

𝐶+exp(3.72−2.95𝐶)
) × (1.0 −

0.7×𝑆𝑁

𝑆𝑁+exp(−5.51+22.9𝑆𝑁)
)  

Sa: sand (%) 
Si: silt (%) 
Cl: clay (%) 
SN = 1 - (Sa/100) 
C: organic carbon 

3 David 

(1988), 
a simplified 
version of 

Wischmeier 
and 

Mannering 
(1969) 

USA Sand (%), 

clay (%), 
silt (%), 

organic 
matter (%), 

pH 

𝐾 = [(0.043 × pH) + (0.62 ÷ OM) +
(0.0082 × 𝑆) − (0.0062 × 𝐶)] × 𝑆𝑖  
pH: pH of the soil 
OM: organic matter (%) 
S: sand content (%) 
C: clay ratio = % clay = (% sand + % silt) 
Si: silt content = % silt/100 

4 El-Swaify 

and 
Dangler 

(1976) 
as cited in 
Renard et 
al. (1997) 

Hawaii, 
USA 

Textural 
information, 

base 
saturation 

𝐾 = −0.03970 + 0.00311𝑥1 + 0.00043𝑥2 +
0.00185𝑥3 + 0.00258𝑥4 − 0.00823𝑥5  

x1: unstable aggregate size fraction (<0.250mm) 

(%) 
x2: modified silt (0.002–0.1 mm) (%) -modified 

sand (0.1–2 mm) (%) 
x3: % base saturation 
x4: silt fraction (0.002–0.050 mm) (%) 
x5: modified sand fraction (0.1–2 mm) (%) 

Note: All of the equations in Table 4.4 use imperial units of soil erodibility: ton acre hour per hundreds of 

acres per foot per tonf per inch. Multiply by 0.1317 for conversion into SI units of metric ton hours per 

megajoules per millimeter. 

 

Table 4.5. K-factor values from Dymond (2010) for soil texture in New Zealand 

No. Soil texture K-factor (Dymond, 2010) 

1 Clay 0.20 

2 Loam 0.25 

3 Sand 0.05 

4 Silt 0.35 

Table 4.6. K-factor values from David (1998) for soil texture in Philippines 

No. Soil texture K-factor (Dymond, 2010) 

1 Loamy fine sand 0.07 

2 Clay 0.13-0.26 

3 Clay loam 0.22-0.30 

4 Loam 0.19-0.63 

5 Sandy clay 0.09-0.20 

6 Sandy loam 0.23-0.30 

7 Silt loam 0.30-0.60 

8 Silty clay 0.19-0.27 

9 Silty clay loam 0.28-0.35 
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4.2.2.3. Slope Length (L) and Steepness (S) Factor  

The LS factor represents the effect of the slope’s length and steepness on sheet, rill, 

and inter-rill erosion by water. It is the ratio of expected soil loss from a field slope relative 

to the original USLE unit plot (Wischmeier and Smith, 1978). The USLE method of 

calculating the slope length and steepness factor was initially applied at the unit plot and 

field scale. The RUSLE extended this to the one-dimensional hill slope scale, with different 

equations depending on whether the slope had a gradient of more than 9% (Renard et al., 

1997; Wischmeier and Smith, 1978). Further research extends the LS factor to 

topographically complex units using a method that incorporates contributing area and flow 

accumulation (Desmet and Govers, 1996). The USLE and RUSLE method of calculating the 

LS factor uses slope length, angle, and a parameter that depends on the steepness of the slope 

in percent (Wischmeier and Smith, 1978). 

One of the criticisms of the original USLE method of calculating LS factor is its limited 

applicability to complex topography. With advances in GIS technology, the method of 

determining the LS factor as a function of upslope contributing area or flow accumulation 

and slope has risen in popularity (Table 4.6). Using DEMs to calculate the upslope 

contributing area and the resulting LS factor allows researchers to account for more 

topographically complex landscapes (Moore and Burch, 1986; Desmet and Govers, 1996). 

Desmet and Govers (1996) have also built on this method by showing its application in a 

GIS environment over topographically complex terrain compared to the original method 

proposed by Wischmeier and Smith (1978). This method of using flow accumulation for 

slope length and steepness explicitly accounts for flow convergence and divergence, which 

is important when considering soil erosion over a complex landscape (Wilson and Gallant, 

2000). It is possible to use this method to calculate the LS factor over a large extent, but a 

high-resolution DEM is needed for an accurate representation of the topography. The 

resolution required depends on the study area’s scale. The relatively coarse globally 

available DEMs (30m at best) are less suited to field and sub-catchment scale studies where 

capturing microtopography's effects may be important. 

The original equations for the LS factor assume that slopes have uniform gradients and 

any irregular slopes would have to be divided into smaller segments of uniform gradients for 

the equations to be more accurate (Wischmeier and Smith, 1978). This manual measurement 

of slopes and dividing them into segments may be manageable at the plot or small field scale, 

but it is less valuable at larger scales. In terms of practicality, Desmet and Govers (1996) 
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have reported studies of this method applied at a watershed scale with the disadvantages of 

it being time-consuming. Studies in Iran and the Philippines have implemented the (R)USLE 

methods within a GIS environment by calculating the LS factor for each raster cell in a DEM, 

essentially treating each pixel as its segment of uniform slope (Bagherzadeh, 2014; Schmitt, 

2009). 

As explained above, using flow accumulation, upslope contributing area, and slope in 

a GIS environment has gained popularity due to its ability to account for flow convergence 

and divergence explicitly, thus capturing more complex topography (Wilson and Gallant, 

2000). The flow accumulation method was applied at the scales of watersheds and regions 

(as shown in Table 4.7) and has even been applied by Panagos et al. (2015a) at the scale of 

the European Union using a 25m DEM. The only thing limiting users is the availability of 

high-resolution DEMs and the trade-off between processing time and accuracy. The original 

(R)USLE methods require only slope angle and length, operate over a single cell in a DEM 

by treating it as a uniform slope, and take less processing time than the flow accumulation 

method. However, the user must remember that this cannot capture the convergence and 

divergence of flow, thus sacrificing accuracy for time. 

Additionally, the issue of limited vertical accuracy in global and many national DEMs 

confounds the uncertainties associated with coarse cell sizes. Further work is suggested to 

understand the appropriate horizontal resolution and vertical accuracy of DEMs used for soil 

erosion predictions at the sub-catchment or field scales. Benavidez (2018) investigated the 

use of high-resolution DEMs (15m and finer), finding the methods that only used slope 

length and steepness were adequate for delineating large vulnerable areas at the watershed 

scale. However, flow accumulation methods performed significantly better at the sub-

watershed or field scale (Benavidez, 2018). In summary, the choice of which LS-factor 

method to use depends on the DEM's spatial resolution, availability of computing resources, 

and scale of the study site. DEMs with spatial resolution coarser than 100m do not accurately 

capture the flow network of a catchment (Panagos et al., 2015a). The LS-factor methods that 

account for only slope length and steepness are recommended for sites with such coarse 

DEMs. At the national, regional, or watershed scale, delineating large areas vulnerable to 

soil loss is more useful due to the ease of managing these areas at such large scales. The 

methods that use only slope length and steepness are recommended. For sub-watershed or 

field studies and with sufficiently fine DEMs (15m or finer), using LS-factor methods that 
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account for flow accumulation is more useful for identifying the most critical areas of 

vulnerability for targeted management approaches. 

 

Table 4. 7. Summary of methods of calculating LS factor, original locations, and other 

studies that used these methods 

No. Author 
Original 

location 
Data 

requirements 
Equation  

1 Wischmeier 

and 
Smith (1978) 

USA Slope length 
and angle 

𝐿𝑆 = (
𝜆

72.6
)
𝑚
× [(65.41 × sin2 𝜃) +

(4.56 × sin 𝜃) + 0.065]  
𝜆: slope length (ft) 
𝜃: angle of slope  
𝑚: dependent on the slope 
- 0.5 if slope is greater than 0.5% 
- 0.4 if slope is 3.5 - 4.5% 
- 0.3 if slope is 1-3% 
- 0.2 if slope is less than 1% 

2 Renard et al. 

(1997) 
USA Slope length 

and angle 𝐿 = (
𝜆

72.6
)
𝑚

 

𝑚 =
𝛽

1 + 𝛽
 

𝛽 =
(
sin 𝜃
0.0896

)

[3.0 × (sin 𝜃)0.8 + 0.56]
 

If slope is less than 9%:  
𝑆 = 10.8 × sin𝜃 + 0.03 
If slope is greater or equal to 9%:  
𝑆 = 16.8 × sin𝜃 + 0.50 
But if the slope is shorter than 15 ft:   
𝑆 = 3.0 × sin 𝜃0.8 + 0.56 
𝜆: slope lenght (ft) 
𝜃: angle of slope  
𝑚: dependent on the slope 
- 0.5 if slope is greater than 0.5% 
- 0.4 if slope is 3.5 - 4.5% 
- 0.3 if slope is 1-3% 
- 0.2 if slope is less than 1% 

3 David (1988), 
based on work 

by Madarcos 

(1985) and 

Smith and 
Whitt (1947) 

Philippines, 

but based 

on work 

from the 

USA 

Slope rise in 
percent 

𝐿𝑆 = 𝑎 + 𝑏 × 𝑆𝐿
4
3⁄  

𝑎 = 0.1 
𝑏 = 0.21  
𝑆𝐿: slope (%) 

4 Morgan (2005) 
but previously 
published in 

earlier editions 

Britain Slope length 
and gradient in 

percent 

𝐿𝑆 = (
𝑙

22
)
0.5

+ 0.065 + 0.045s + 

0.0065𝑠2) 

𝑙: slope length (m) 

𝑠: slope steepness (%) 
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5 Moore and 

Burch 
(1986) as cited 

in Mitasova 
et al. (1996) 
Desmet and 

Govers 
(1996); 

Mitasova et 
al. (2013) 

USA Upslope 

contributing 
area 
per unit width, 
which can be 
approximated 
through flow 
accumulation, 
cell size, slope 

𝐿𝑆 = (𝑚 + 1) (
𝑈

𝐿0
)
𝑚

(
sin𝛽

𝑆0
)
𝑛

 

𝑈 (m2 m-1): upslope contributing area 

per unit width as a proxy for discharge  

𝑈 = flow accumulation × cell size  

𝐿0: lenght of the unit plot (22.1) 

𝑆0: slope of the unit plot (0.09) 

𝛽: slope 

𝑚 (sheet) and 𝑛 (rill) depend on the 

prevailing type of erosion (𝑚 = 0.4 to 

0.6) and 𝑛 (1.0 to 1.3) 

 

4.2.2.4. Cover and Management Factor (C) 

The cover and management factor (C) is defined as the ratio of soil loss from a field 

with a particular cover and management to that of a field under “clean-tilled continuous 

fallow” (Wischmeier and Smith, 1978). The (R)USLE uses a combination of sub-factors 

such as impacts of previous management, canopy cover, surface cover and roughness, and 

soil moisture on potential erosion to produce a value for the soil loss ratio, which is used 

with the R factor to produce a value for the C-factor (Renard et al., 1997). This method 

requires extensive knowledge of the study area’s cover characteristics, including agricultural 

management. It may be suitable at the field or farm scale, but monitoring all these 

characteristics at the watershed scale may not be feasible. 

A simpler method of determining the C-factor is referencing studies with reported 

values for similar land cover or studies done in the same area or region. Table 4.8 and 4.9 

give a broad overview of C factors for cover types and common crops. Wischmeier and 

Smith (1978) also include the effect of percent ground cover, reporting C-factor values for 

the same cover type over a cover percentage and condition range. Morgan (2005) and David 

(1988) have reported values for the different growth stages of the same kinds of trees. A 

simple method of creating a C-factor layer is using lookup tables to assign C-factor values 

to the land cover classes in the study area. When using C factors from the literature, it is 

essential to note that the definition of land cover type between two countries may vary. For 

example, land classified as forest in one country may be different regarding vegetation cover 

or type compared to the forest in another (e.g. differences in pine forests and tropical forests). 

Therefore, it is crucial to understand the differences between land cover classifications 

before applying C-factor values from the literature. Van der Knijff et al. (2000) cite the large 

spatial and temporal variations in cover and crop over a large region such as the European 
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Union as another reason why using the lookup-table-based approach is inadequate and 

tedious. Another method of determining the C-factor is the normalized difference vegetation 

index (NDVI) estimated from satellite imagery to address this. Although there are NDVI 

layers available, these are limited by geographical coverage, date of acquisition, and 

resolution. The MODIS NDVI dataset made by Caroll et al. (2004) at 250m resolution covers 

the USA and South America. NASA produced a global dataset of NDVI values at 10 

resolutions for the time span of July 1983 to June 1984, making it suitable for studying 

historical soil erosion but not necessarily for the current state of land cover3. In areas where 

ready-made NDVI products are unavailable, authors have used satellite imagery to obtain 

NDVI such as AVHRR or Landsat ETM (Van der Knijff et al., 2000; De Asis and Omosa, 

2007; Ma et al., 2010, as cited in Li et al., 2014). De Asis and Omasa (2007) related the C-

factor and NDVI through fieldwork and image classification – determining the C-factor at 

several points within the study area using the (R)USLE approach and relating it to the NDVI 

through regression correlation analysis. This may not be feasible in larger study areas such 

as the European Union, where Van der Knijff et al. (2000) determined NDVI from satellite 

imagery and created an equation based on its positive correlation with green vegetation 

(Table 4.8). This approach enabled them to create a C-factor map over the European Union. 

However, C factors were unrealistically high in some areas such as woodland and grassland, 

so values for those areas were taken from the literature.  

An advantage of using NDVI is that researchers can determine sub-annual C factors if 

there is satellite imagery available, which can lead to understanding the contribution of cover 

to seasonal soil erosion and identifying critical periods within the year where soil erosion is 

a risk (Ferreira and Panagopoulos, 2014). Similar methods have been applied in Brazil by 

Durigon et al. (2014) and Kyrgyzstan by Kulikov et al. (2016). Determining C factors at the 

seasonal scale is important because vegetation cover can change throughout the year due to 

agricultural and forestry practices. In study areas with a high temporal variation of rainfall 

throughout the year, seasonal vegetation can greatly exacerbate or mitigate soil erosion.  

To summarize, the choice of which method to use depends on the scale of the study 

area, reported C factors for a similar cover, and availability of high-resolution imagery. For 

small-scale studies, it is more feasible to determine the C factors through fieldwork (Table 

4.10). If previous (R)USLE studies have reported C factors for a cover similar to the study 

area, those values can be used for the table-based approach. Lastly, high-resolution imagery 

can be used to determine the study area’s NDVI. At small scales and with a good 
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understanding of differences in land cover classifications, pulling values from the literature 

may be the most efficient choice, but at larger regional scales, this may become tedious. At 

larger scales, high-resolution satellite imagery may be available to determine NDVI. Still, 

authors must be mindful of its acquisition date in relation to their study period, as well as 

data quality and image processing issues such as dealing with cloud cover and aggregating 

images from multiple satellite passes (Van der Knijff et al., 2000; Kulikov et al., 2016). 

 

Table 4.8. C-factor equations that use NDVI 

No. Author 
Original 

location 
Equation  

1 Van der 

Knijff et al. 

(2000) 

Europe 
𝐶 = exp [∝ (

NDVI

𝛽 − NDVI
)] 

∝ = 2 

𝛽 = 1 

2 Ma et al. 

(2010) as 

cited in Li et 

al. (2014) 

China 
𝑓𝑔 =

NDVI − NDVImin
NDVImax − NDVImin

 

 

 

Table 4.9. C-factors for general types of land cover compiled from various sources 

No. Cover Dymond 

(2010), 

New 

Zealand 

David 

(1988), 

Philippines 

Morgan 

(2005), 

USA 

Fermandez 

et al. 

(2003), 

USA 

Dumas 

and 

Fossey 

(2009), 

Vanuatu 

Land 

Development 

Department 

(2002), 

Thailand as 

cited in 

Nontananandh 

and Changnoi 

(2012) 

1 
Bare 

ground 
1 1 1 NA 

NA NA 

2 Urban NA 0.2 NA 0.03 0 0 

3 Crop NA NA NA 0.128 0.01 0.255-0.525 

4 Forest 0.005 
0.001-

0.006 
0.001 0.001 0.001 0.003-0.048 

5 Pasture 0.01 NA 0.1 NA NA NA 

6 Scrub 0.005 0.007-0.9 0.01 0.003 0.16 0.01-0.1 
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Table 4.10. C-factors for specific types of land cover compiled from various sources 

Cover 

Panagos et al. 

(2015b) 

(Europe) 

David (1988) 

(Philippines) 

Morgan (2005) 

(Varous) 

Bananas NA 0.1-0.3 NA 

Barley 0.21 NA NA 

Chili NA NA 0.33 

Cocoa NA NA 0.1-0.3 

Coffee NA NA 0.1-0.3 

Common wheat and spelt 0.2 NA 0.1-0.4 

Cotton seed 0.5 0.4-0.6 0.4-0.7 

Dried pulses (legumes) and 

protein crop 

0.32 0.3-0.5 0.04-0.7 

Durum wheat 0.2 NA NA 

Fallow land 0.5 NA NA 

Grain-maize/corn 0.38 0.3-0.6 0.02-0.9 

Groundnuts NA NA 0.3-0.8 

Linseed 0.25 NA 0.1-0.2 

Oilseeds 0.28 NA NA 

Palm with cover crops NA 0.05-0.3 0.1-0.3 

Pineapple NA 0.2-.05 0.01-0.4 

Potatoes 0.34 NA 0.1-0.4 

Rape and turnip rape 0.3 NA NA 

Rice 0.15 0.1-0.2 0.1-0.2 

Rye 0.2 NA NA 

Soya 0.28 NA 0.2-0.5 

Sugar beet 0.34 NA NA 

Sugarcane NA NA 0.13-0.4 

Sunflower seed 0.32 NA NA 

Tobacco 0.49 0.4-0.6 NA 

Yams NA NA 0.4-0.5 

 

Table 4.11. Examples of where C-factor accounts for crop management from Morgan 

(2005) and David (1988) 

Crop Management C factor 

Maize, sorghum, or millet High productivity; conventional tillage  0.20-0.55 

 Low productivity; conventional tillage  0.50-0.90 

 High productivity; chisel plowing into 

residue   

0.12-0.20 

 Low productivity; chisel plowing into 

residue   

0.30-0.45 

 High productivity; no or minimum tillage  0.02-0.10 

Coconuts Tree intercrops  0.05-0.1 

 Annual crops as intercrop 0.1-0.30 
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4.2.2.5. Support Practice Factor (P) 

The support practice factor (P) is defined as the ratio of soil loss under a specific soil 

conservation practice (e.g. contouring, terracing) to that of a field with upslope and 

downslope tillage (Renard et al., 1997). The P factor accounts for management practices that 

affect soil erosion through modifying the flow pattern, such as contouring, strip cropping, or 

terracing (Renard et al., 1997). The more effective the conservation practice is at mitigating 

soil erosion, the lower the P factor (Bagherzadeh, 2014). Like the C factor, values for P 

factors can be taken from the literature; if no support practices are observed, the P factor is 

1.0 (Adornado et al., 2009). The P factor can also be estimated using sub-factors, but the 

difficulty of accurately mapping support practice factors or not observing support practices 

leads to many studies ignoring it by giving their P factor a value of 1.0 (Adornado et al., 

2009; Renard et al., 1997; Schmitt, 2009). 

Another possible reason why studies may ignore the P factor is due to the nature of 

their chosen C factors. Some C factors already account for a support factor, such as 

intercropping or contouring. For example, Morgan (2005) and David (1988) give C factors 

for one type of crop but with different types of management (Table 4.10). Despite the P 

factor being commonly ignored, a number of studies have reported possible P factors for 

different kinds of tillage, terracing, contouring, and strip cropping (Table 4.12). The P factor 

has a significant impact on the estimation of soil loss. For example, a P factor of 0.25 for 

zoned tillage reflects the potential for this management factor to reduce soil by 75% loss 

compared to conventional tillage (P factor: 1.00). At suitably detailed scales and with enough 

knowledge of farming practices, using these P factors may lead to a more accurate estimation 

of soil loss. Additionally, these P factors can be used in scenario analysis to understand how 

changing farming practices may mitigate or exacerbate soil loss. An application of (R)USLE 

in the Cagayan de Oro catchment in the Philippines showed, through scenario analysis, that 

soil conservation practices such as agroforestry and alley cropping could potentially lead to 

large decreases in soil loss compared to the baseline scenario (Benavidez, 2018). 

In summary, including the P factor in (R)USLE applications is important because of 

the significant effects of some management practices on reducing soil loss compared to 

conventional tillage. The P factor is useful for studies where different management practices 

are being considered for the same site, as it can elucidate which practices are more beneficial 

for soil conservation. 
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Table 4.12. P-factors for different types of agricultural management practices 

 
 

4.2.2.6. Limitations of (R) USLE 

This section presents a few of the key limitations of the (R)USLE: regional 

applicability, uncertainties associated with the model, input data and validation, and 

representing other types of erosion. The original USLE was formulated based on soil erosion 

studies on agricultural land in the USA. When applied to different climate regimes and land 

cover conditions, this may lead to greater uncertainties associated with estimates of average 

annual soil loss (Kinnell, 2010). Since the (R)USLE parameters were developed based on 

small-scale studies of agricultural plots, there are also uncertainties associated with 

upscaling the original USLE to the catchment or regional scale (Nagle et al., 1999; Naipal 

et al., 2015). Wischmeier and Smith (1978) have also warned that using the (R)USLE in 

conditions extremely different from the agricultural conditions the model was formulated 

under may lead to extrapolation error. 

Sensitivity analysis and testing which (R)USLE subfactors suit particular study sites 

is one method of addressing the (R)USLE’s regional applicability. To reduce uncertainty in 
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accounting for land use, work by Post and Hartcher (2005) recommended using C-factor 

values for specific land cover classifications (e.g. specific crops, forest growth stages) 

instead of values for broad land cover categories (e.g. agriculture, forest). Although C-factor 

values can be taken from the literature or determined in situ, an extensive literature review 

compiling potential soil loss rates of different crop and forest covers compared to likely soil 

loss rates of bare soil can be used to determine likely C-factor values of a particular site. 

Improvements and modifications to the (R)USLE subfactors have made it applicable to 

larger spatial scales, including a coarse-resolution representation at the global scale (Naipal 

et al., 2015). The pan-European application by Panagos et al. (2015a) showed setting a 

maximum value for slope steepness of 50% (26.60) would prevent significantly large LS-

factor values and account for the absence of soil on such steep slopes. Assembling published 

estimates of (R)USLE sub-factors from different climatic regions and soil types would help 

in sensitivity testing (R)USLE equations, deciding the most appropriate equation to use, and 

verifying the derived (R)USLE sub-factor values.  

The uncertainties associated with the (R)USLE, and arguably soil erosion modelling 

in general, stem from several factors: the inability of models to capture the complex 

interactions involved in soil loss, the low availability of long-term reliable data for modelling, 

and the lack of soil erosion observational data for model validation, especially in datascarce 

environments. The simplicity of the (R)USLE allows usage in locations where there are 

insufficient data for more complex models that require large input datasets (Hernandez et al., 

2012). Of the studies reviewed, very few critically discuss the uncertainties associated with 

the (R)USLE, but those that do offer several ways to overcome these uncertainties. Since the 

(R)USLE does not account for all the complex interactions associated with soil erosion, its 

predicted soil  erosion rates should be taken as best estimates rather than absolute values 

(Wischmeier and Smith, 1978). Some applications have chosen to display their soil loss 

results as categorical to produce maps that show low, medium, or high areas of vulnerability 

instead of showing annual average amounts (Adornado et al., 2009; Schmitt, 2009). The 

(R)USLE is a good first attempt at identifying vulnerable areas and estimating soil loss for 

a landscape at the baseline scenario due to the model’s relative simplicity and few data 

requirements (Aksoy and Kavvas, 2005). The (R)USLE is also useful for doing scenario 

analysis to check whether changing land use or management practices would either 

exacerbate or mitigate soil loss, making it useful for comparison purposes (Merritt et al., 

2004; Nigel and Rughooputh, 2012).  



  

113 

Validating the soil erosion rates produced by the (R)USLE is difficult because of the 

lack of easily obtainable observational soil erosion records, especially in data-scarce 

environments. Out of the (R)USLE applications reviewed for this paper, 30% presented 

explicit comparisons between their modelled soil loss from (R)USLE and observed soil loss, 

modelled soil loss from (R)USLE and other models (one study), and soil loss from multiple 

models and observed soil loss (one study).  

Based on the remaining studies that reported comparisons of modelled RUSLE soil 

loss to observed soil loss, the modelled-to-observed ratio ranged from extreme under 

prediction at 0.04 to over-prediction at over 3 times the observed values. The applications 

where RUSLE severely under-predicted soil loss cited the model’s inability to account for 

gully erosion and mass wasting as one of the reasons for estimation errors, thus underscoring 

the importance of including these types of erosion in future improvements to RUSLE 

(Dabney et al., 2012; Gaubi et al., 2017). Another issue is temporal and/or spatial resolution 

differences and sometimes differing timescales between modelled and observed estimates. 

Average observations based on occasional grab samples of sediment in streams may not well 

represent the monthly to annual sediment loads the (R)USLE is attempting to estimate. In 

another example, López-Vicente et al. (2008) compared observed to modelled values and 

had a ratio of modelled to observed soil loss of 0.62. However, the “observed” soil loss was 

based on 137Cs measurements that were indicative of average soil loss values for the past 

40 years, while the model values were based on 1997–2006 driving data. During this period, 

the study area experienced lower precipitation and thus had lower modelled soil loss 

measurements compared to the soil loss derived from the 137Cs records (López-Vicente et 

al., 2008). 

As stated earlier, the regional applicability of the RUSLE is a limitation that requires 

the sub-factors to be adjusted and modified based on the specific characteristics of the 

researcher’s study site. Nakil and Khire (2016) and Abu Hammad et al. (2005) show this 

important practice in RUSLE applications in their studies. Through testing and refining their 

method of accounting for topography through the LS factor, the ratio of modelled to 

observed soil loss ranged from 0.8 to almost unity (Nakil and Khire, 2016). The initial 

application of RUSLE of Abu Hammad et al. (2005) over-estimated soil loss by a factor of 

3, but with adjustments to the subfactors based on local data on soil moisture, land cover, 

and support practices, the model error was reduced to 14 %. The importance of adjusting 

RUSLE with the availability of more detailed data was further shown in the pan-European 
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study of Panagos et al. (2015b), where detailed soil, topography, land cover, and 

management practices allowed the researchers to refine their application where most of the 

ratios of modelled to observed soil loss were very good (0.9 to 1.3). In the validation areas 

where the soil loss comparisons were not good, further local testing and refining of the 

RUSLE subfactors is seen as an area in which to improve the model results (Beskow et al., 

2009; Panagos et al., 2015b).  

A global soil erosion study using RUSLE was accomplished by Borrelli et al. (2017) 

using the rainfall erosivity map generated by Panagos et al. (2017) that showed comparable 

results to regional and local soil erosion estimates, and good agreement with global soil 

erosion datasets such as the Global Assessment of Human-induced Soil Degradation 

(GLASOD) dataset. 

Future work in the soil erosion literature could include assembling a comprehensive 

database of global, regional, and national soil erosion rates to allow comparison between soil 

erosion modelling methods, not just (R)USLE results. A proxy for understanding soil erosion 

is water quality data such as total suspended solids (TSS) that includes sediment delivery 

and organic sources (Schmitt, 2009). However, TSS usually excludes the larger and heavier 

bed load sediments that could be resulting from mass wasting events or erosion (Nagle et al., 

1999). Nevertheless, water quality data are useful for inferring likely temporal patterns of 

soil erosion or the sediment yield during seasons of heavy rainfall or after extreme events. 

Ground truthing or analysis of satellite imagery is another useful method of validating the 

(R)USLE results, as the areas of extreme erosion risk can be checked for physical evidence 

of soil loss occurrence (De Asis and Omasa, 2007; Adornado and Yoshida, 2010; 

Nontananandh and Changnoi, 2012). The soil loss estimates can be validated against 

observations from similar catchments, recorded events of mass wasting, or larger-scale soil 

loss studies at the national or regional scale (Panagos et al., 2015b; Nakil and Khire, 2016). 

Lastly, a frequently cited limitation is that the (R)USLE estimates soil loss through 

sheet and rill erosion, but not from other types of erosion such as gully erosion, channel 

erosion, bank erosion, or mass wasting events such as landslides (Nagle et al., 1999; 

Wischmeier and Smith, 1978). By excluding these types of erosion, the (R)USLE may 

underestimate the actual soil loss (Thorne et al., 1985). The model also does not account for 

deposition, leading to overestimation, or sediment routing (Desmet and Govers, 1996; 

Wischmeier and Smith, 1978). One of the possible methods for linking the (R)USLE results 

to sediment delivery to streams is using the sediment delivery ratio (SDR), defined as “the 
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ratio of the sediment delivered at a location in the stream system to the gross erosion from 

the drainage area above that point”. This parameter varies depending on the gradient, slope 

shape, and length and can also be influenced by land cover, roughness, etc. Given that it is 

influenced by characteristics similar to those of the (R)USLE, future work can include 

combining the (R)USLE with the SDR to estimate sediment delivery to streams and avoiding 

possible double counting. These two limitations of deposition and routing are linked to the 

model’s representation of more topographically complex terrain. Previous studies have 

attempted to address them by improving the LS factor by incorporating upstream 

contributing area (Desmet and Govers, 1996; Moore et al., 1991).  

Despite these drawbacks, the USLE family of models is still widely used because of 

is relative simplicity and low data requirements compared to more complex physically based 

models. Worldwide studies continue to improve (R)USLE parameterization and application 

in different climate regimes and locations. 

 

4.2.2.7. Consistency in Units 

The USLE was originally developed using imperial units; although the handbook 

provides conversion factors to convert to metric, there are still issues within the scientific 

literature regarding units. In the process of this review, it was noted that, although most 

studies used the metric units for R factor and K factor, there were other studies that did not 

report their units or had units that were not the imperial or metric units of (R)USLE. Since 

the original (R)USLE was formulated with US customary units, researchers must be careful 

to use the correct units and conversions to metric (Renard and Freimund, 1994). Renard et 

al. (1997) recommends a conversion factor of 17.02 for the R factor and 0.1317 for the K 

factor to convert from imperial to metric units. As mentioned, uncertainties are associated 

with the (R)USLE, and publishing sub-factor values and soil loss estimates for future 

reference by other researchers is a potential way to reduce some of those uncertainties. The 

problem of unclear or inconsistent units causes problems for future researchers in terms of 

adapting the rainfall erosivity or soil erodibility equations for their own study sites, 

underscoring the need for clear and explicit reporting of units in the (R)USLE literature. 

 

4.2.3. Determination of RUSLE Factor Values 

The applied methodology (as shown in Figure 4.4) to estimate soil erosion rate in the 

study catchment was employed with the GIS-based Revised Universal Soil Loss Equation 
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(RUSLE) model (Renard et al., 1997). The obtained geospatial input parameters for the 

RUSLE model (Table 4.13) were used to produce thematic maps to estimate potential soil 

erosion risk. RUSLE is an extension of the Universal Soil Loss Equation (USLE) model by 

adjusting the input factors for the local conditions (Renard et al., 1997; McCool et al., 1995). 

The application of the RUSLE model is simple and applicable in limited data conditions. 

Because of its suitable capacity and relatively simple computational inputs, RUSLE has been 

widely used around the world, including in Ethiopia (Gashaw, et. al., 2019; Kebede, et. al., 

2019), Kenya (Kogo, et. al., 2020), Zimbabwe (Marondedze and Schütt, 2020); China (Hui, 

et. al., 2019; Kolli, et. al., 2021), Japan (Mihara, et. al., 2005), India (Prasannakumar et. al., 

2012), Nepal (Talchabhadel, et. al., 2020; Koirala et. al., 2019); Sri Lanka (Jayasinghe et. 

al., 2010), South-East Asian countries (Philippines (Adornado, et. al., 2009; De Asis and 

Omasa, 2007; Hernandez, et. al., 2012), Thailand (Krishna Bahadur, 2009; Merritt, et. al., 

2004), and Mekong River Basin (Chuenchum, et. al., 2019; Thuy and Lee, 2017; Chuenchum, 

et. al., 2020). Furthermore, the RUSLE also provides international applicability and 

comparability for the results and methods because the model can be adjusted and applied in 

many parts of the world. The RUSLE model and its predecessor USLE (Wischmeier and 

Smith, 1978) estimate the rate of mean annual soil loss by considering multiple factors 

expressed in Equation (1): 

 

𝐴 = 𝑅 × 𝐾 × 𝐿𝑆 × 𝐶 × 𝑃  (1) 

 

where: A is the mean annual soil loss (t/ha/y); R is the rainfall erosivity factor 

(MJ/mm/ha/hr/y); K is the soil erodibility factor (t/hr/MJ/mm); LS is the topographiC-factor 

(dimensionless); C is the cropping management factor (dimensionless); and P is the support 

practice factor (dimensionless). 
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Figure 4.4. Flowchart of applied methodology for modelling soil erosion in the 

catchment. 

 

Table 4.13. Data used and data source for soil erosion modelling in the catchment 

No. Factors Resolution Data Source Format 

1 R Factor - 
Daily rainfall data (2007–2018) from Ministry of Water 

Resources and Meteorology in Cambodia (MORWAM). 
Raster 

2 K Factor 1 km 
FAO/UNESCO Soil Map of the World database through 

the Harmonized World Soil Database (HWSD).  
Raster 

3 LS Factor 30 m 
Digital Elevation Model (DEM) from the United States 

Geological Survey (USGS) website. 
Raster 

4 C Factor 30 m 
Obtained by assigning weighted C-factor values to the 

LULC based on the literatures. 
Raster 

5 P Factor 30 m 

Obtained by assigning weighted P factor values to the 

LULC based on the literature as suggested by Yang et al. 

(2003). 

Raster 
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4.2.3.1. Rainfall Erosivity (R) Factor 

The R-factor accounts for the erosive force of a specific rainfall (Wischmeier and 

Smith, 1978). The erosive power of a particular precipitation is determined by the amount, 

intensity and distribution of precipitation; where intensity is the most important property 

determining the amount of erosion (Blanco-Canqui and Lal, 2008). Therefore, in the original 

USLE and its revised version (RUSLE), the R-factor was represented in the rainfall intensity 

data. The annual R-factor is a function of the average annual EI30 that is calculated from 

detailed and long-term records of storm kinetic energy (E) and the 30-min maximum 

intensity (I30) of the storm (Renard et al., 1997; Adornado et al., 2009). In general, rainfall 

intensity data is rarely available in Cambodia, especially in the research areas. For this reason, 

daily rainfall data collected from six weather stations (Figure 4.5) in 2007–2018 were 

obtained from the Ministry of Water Resources and Meteorology (MOWRAM) of Cambodia. 

Then, the average annual rainfall of the stations (2007–2018), required for the calculation of 

the R-factor was drawn from the daily data set. The calculated R-factor was interpolated 

using the inverse distance weighting (IDW) method and converted into a 30 m cell size grid 

(Figure 4.5a). 

 

Figure 4.5. Maps of R-factor (a), K-factor (b), slope (c) and LS-factor (d) of the 

Sangkae catchment 
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In this study, the equation (Equation (2)) was chosen to calculate the R-factor from 

Reference (El-Swaify et al., 1987). The equation has been adopted by many users in 

Southeast Asian countries and has been extensively used in Thailand (Merritt et al., 2004; 

Eiumnoh, 2000), Philippines (Adornado et al., 2009; De Asis and Omasa, 2007; Hernandez 

et al., 2012) and also Sri Lanka (Jayasinghe et al., 2010), Nepal (Koirala et al., 2019) and 

African countries of Rwanda (Byizigiro et al., 2020), and Zimbabwe (Marondedze and 

Schütt, 2020). 

 

where R = rainfall erosivity (MJ/mm/ha/hr/y) and P = mean annual rainfall amount (mm). 

 

4.2.3.2. Soil Erodibility (K) Factor 

 The K-factor corresponds to the influence of the soil’s physical and chemical 

properties on erosion during storm events in upland areas (Renard et al., 1997); Wischmeier 

and Smith, 1978). Some of the soil properties that affect soil erodibility include soil texture, 

drainage condition, soil depth, structural integrity and organic content (Prasannakumar et al., 

2012). Among the different methods for computing the K-factor, the soil nomograph method, 

which uses the relative ratios of soil texture, permeability, soil structure and organic matter 

content (Wischmeier and Smith, 1978), is the most commonly used method. In this study, 

soil data were acquired from FAO/UNESCO Soil Map of the World database through the 

Harmonized World Soil Database (HWSD) because the observed data of the local soil 

properties in Cambodia is limited and difficult to access. The HWSD is a 30 arc-second 

raster database (approximately 1 km of spatial resolution) with over 15,000 different soil 

mapping units that combine existing regional and national updates of soil information around 

the world. The soil information extracted from the database for assessing soil erodibility 

includes sand, silt, clay, and organic carbon. The mentioned soil parameters were used to 

compute the K-factor based on the following Equations. 

𝐾𝑈𝑆𝐿𝐸 = 𝑓𝑐𝑠𝑎𝑛𝑑 × 𝑓𝑐𝑙−𝑠𝑖 × 𝑓𝑜𝑟𝑔𝐶 × 𝑓ℎ𝑖𝑠𝑎𝑛𝑑  (3) 

𝑓𝑐𝑠𝑎𝑛𝑑 = (0.2 + 0.3 × exp [−0.256 × 𝑚𝑠  × (1 −
𝑚𝑠𝑖𝑙𝑡
100

)]) (4) 

𝑓𝑐𝑙−𝑠𝑖 = (
𝑚𝑠𝑖𝑙𝑡

𝑚𝑐 +𝑚𝑠𝑖𝑙𝑡
)
0.3

 (5) 

𝑓𝑜𝑟𝑔𝐶 = (1 −
0.25 × 𝑂𝑟𝑔𝐶

𝑂𝑟𝑔𝐶 + exp[3.72 − (2.95)  × 𝑂𝑟𝑔𝐶]
) (6) 

R = 38.5 + 0.35 P (2) 
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𝑓ℎ𝑖𝑠𝑎𝑛𝑑 = (1 −
0.7 × (1 −

𝑚𝑠
100)

(1 −
𝑚𝑠
100) + exp [−5.51 + 22.9 × (1 −

𝑚𝑠
100)]

) (7) 

 

where K is the soil erodibility factor, fcsand is a function of the high coarse sand content of 

the soil, fcl-si is a function of the clay and silt of the soil, forgC is a function of the organic 

carbon content of the soil, fhisand is the function of high sand content in the soil, ms is the % 

sand content (0.05–2.00 mm diameter particles), msilt is % silt content (0.002–0.05 mm 

diameter particles), mc is the % clay content (<0.002 diameter particles), and orgC is % 

organic carbon content of the layer (%). The values of the K-factor are between 0 to 1, where 

values tending towards 1 indicate an increase in susceptibility to erosion by water (Byizigiro 

et al., 2020). The same value of K-factor was used for both LULC of JICA 2002 and MRC 

2015 as there were no separate data for the different periods. 

 

4.2.3.3. Topographic (LS) Factor 

The topographiC-factor is one of the most important parameters of the RUSLE model 

for determining soil erosion since the gravity force plays an important role in surface runoff 

(Moore and Burch, 1986; Zhang et al., 2013). This factor combines the slope length (L), 

which measures the distance from the source to the top of the intercalation, and the slope 

steepness (S). The slope length measurement is incomplete, in which the catchment is 

characterized as heterogeneous, and considers the topographic scale and aspects related to 

LULC (Moore and Burch, 1986; Van Remortel et al., 2001). The LS-factor combines both 

the length and steepness of the land slope, so it noticeably affects the soil loss rate. This 

factor was calculated from the DEM of Cambodia at a 30-m spatial resolution obtained from 

the United States Geological Survey (USGS) Earth Explorer at 

https://earthexplorer.usgs.gov. The LS factor maps were created using ArcGIS 10.3 and the 

ArcHydro extension tools to undertake DEM sink filling prior to creating the flow direction 

and flow accumulation. Then, the surface slope angle was calculated from the DEM, and the 

LS factor was computed using the following equation as recommended by Van Remortel et 

al. (2001). This equation has been adopted by several researchers (Kogo et al., 2020; Nakil 

and Khire, 2016; Rozos et al., 2013; Van Remortel et al., 2001; Yoshino and Ishioka, 2005). 

𝐿𝑆 = (𝐹𝑙𝑜𝑤 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ×
𝑐𝑒𝑙𝑙 𝑠𝑖𝑧𝑒

22.13
)
𝑚

× (0.065 + 0.045𝑠 + 0.0065𝑠2) (8) 
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where: cell size is the resolution of the DEM pixels (30 m resolution pixel), s is the slope 

gradient in %; m = dimensionless exponent based on the steepness of the land. The values 

of m are assigned as: 0.5, 0.4, 0.3 and 0.2 for slopes of >5%, 3–5%, 1–3% and <1%, 

respectively (Renard et al., 1997; McCool et al., 1995). The same LS-factor was used for 

both study years of JICA 2002 and MRC 2015. 

 

4.2.3.4. Crop Management (C) Factor and Conservation Practice (P) Factor 

The cover and management factor (C) is expressed as the soil loss ratio from an area 

with a certain cover and management, in which the C-factor accounts for the role of 

vegetative covers against water erosion (Wischmeier and Smith, 1978; Morgan, 2009). In 

the areas without vegetation, soil erosion by water is high. Conversely, due to the high 

protection of the soil surface by the vegetation against erosion, the soil erosion from the land 

with vegetation cover is low. Therefore, this can reduce soil erosion by returning the LULC 

types into more vegetation surface covers. For this reason, the C-factor is probably the most 

crucial factor in reducing soil erosion. An easier way to determine the C-factor is to report 

similar land cover values and refer to previous studies, or to studies conducted in the same 

area or region (Benavidez et al., 2018). However, it is important to note that the definition 

of land cover type may differ among countries when using the C-factor in the literature. For 

Instance, land classified as a forest in one country may have a different vegetation cover or 

type than forests in another country (e.g., the difference between a pine forest and a tropical 

rainforest). Therefore, it is important to understand the differences in land cover 

classifications before applying the C-factor values from the literature (Benavidez et al., 

2018). To develop C-factor maps of the study catchment from the corresponding LULC 

temporal layers, C factors were assigned for each LULC type based on the literature (Table 

4.14). 
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Table 4.14. Adopted values of C and P factor for the catchment land use and land 

cover (LULC) classes 

LULC Classes C-factor  P Factor  

Agricultural land 0.5 0.5 

Barren land 0.35 1.0 

Built-up area 0.1 1.0 

Deciduous forest 0.01 1.0 

Evergreen forest 0.001 1.0 

Grassland 0.08 1.0 

Marsh and swamp 0.05 1.0 

Mixed forest 0.1 0.8 

Paddy field 0.1 0.5 

Shrubland 0.014 1.0 

Water bodies 0.01 1.0 

 

The P-factor represents the role of conservation practices in reducing erosion 

(Wischmeier and Smith, 1978). The value of P-factor is between 0 and 1. In general, 1 is 

assigned to areas without protection measures (Adornado et al., 2009; Gashaw et al., 2021), 

and a minimum value close to 0 is given for areas with suitable protection measures. 

Therefore, the lower the P value is, the more effective the protection against erosion is 

(Prasannakumar et al., 2012). A review of the RUSLE model by Benavidez et al. (2018) 

emphasized that the P-factor could also be estimated using sub-factors. Even so, the 

difficulty of accurately mapping supporting practice factors or not observing support 

practices has led many studies to ignore it by setting the value of its P-factor to 1, as seen in 

other studies (Marondedze and Schütt, 2020; Adornado et al., 2009; Gashaw et al., 2021). 

However, in the studied catchment, the P factor was determined based on the land cover type 

from the C-factor (Table 4.14) as suggested by Yang et al. (2003). 

 

4.3. Results and Discussion 

4.3.1. RUSLE Factors 

The various RUSLE factors identified in this study are shown in Table 4.15 and Figure 

4.6. The rainfall erosivity (R-factor) value ranged from 496 to 590 MJ mm/ha/hr/y (mean of 

524). The rainfall erosivity factor map for Stung Sangkae catchment depicts moderate 

variations over the study periods between 2002 and 2015. In parts of the lowland areas, the 
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value of R-factor was below 500 MJ mm/ha/hr/y, while in the upland parts of the catchment, 

the R-factor was higher reaching up to almost 600 MJ mm/ha/hr/y (Figure 4.6a). 

The R-factor is the main driver of soil erosion. There are many equations to estimate 

the rainfall erosivity factor based on the preferences of the individual researchers and the 

regions. Benavidez et al. (2018) showed that due to the detailed data requirements for the 

standard (R)USLE computation of rainfall erositivity, alternative equations have been used 

when studying in areas with less detailed data, depending on the temporal resolution and 

availability of the precipitation data. In the study, the equation recommended by El-Swaify 

et al. (1987), adopted by many researchers around the world, mostly in Africa (e.g., Ethiopia, 

Kenya, Zimbabwe) and the Asia (e.g., China, India, Malaysia, Nepal, Thailand, Philippine), 

particularly the South-East Asian countries and MRB countries were chosen for soil erosion 

analysis. At the same time, the K-factor was calculated following the equation (Williams, 

1995). According to Yang et al. (2013), soil loss is proportional to rainfall erosivity index 

when all the other factors are held constant; therefore, it is an important factor in the model. 

The study showed that the spatial distribution of rainfall-runoff erosivity in the catchment 

was consistent with the amount of precipitation received in various parts of the study 

catchment. The highest calculated erosivity indices were more in the southwestern regions 

of the study area, mainly in Phnom Samkos Wildlife Sanctuary, compared with central areas 

and floodplain areas (Figure 4.6). In Cambodia, the average annual rainfall is 1400 mm in 

the central lowland regions and can reach 4000 mm in some coastal areas or in the highlands 

(Thoeun, 2015). As a result, the high rainfall erosivity indices in the region are more likely 

to occur during the rainy season which runs from mid-May to early October. 

 

Table 4.15. The mean annual precipitation (mm) in the study area and the 

corresponding R-factor 

Station 

Location 
Elevation 

(m) 

Mean Annual 

Rainfall (2007–2018) 

R Factor  

(MJ/mm/

ha/hr/y) 
Longitude Latitude 

Pailin 102.61 12.85 95 1399.8 528.4 

Battambang 103.20 13.09 94 1318.7 500.1 

Samlout 102.85 12.61 153 1576.9 590.4 

Rotanak 

Mondol 
102.96 12.89 258 1313.1 498.1 

Moung Ruessei 103.44 12.77 29 1308.3 496.4 

Pursat 103.54 12.33 22 1410.7 532.3 
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Soils in the catchment upland areas were dominated by Nitosols (clay), which covers 

27% of the catchment and Acrisols (clayey loams), which covered 12% of the catchment, 

while in the lowland and floodplain areas, the soil was dominated by Luvisols (34%) and 

Gleysols (12%). Thus, the soils varied from clay to clay loams in the catchment based on the 

soil texture classification (Table 4.16). The soil erodibility (K-factor) values ranged from 

0.26 to 0.3 tons h/MJ/mm (Figure 4.6b). The slope in the catchment varied from 0–61 

degrees, and the LS factor values ranged from 0 to 215 (Figure 4.6 c,d). 

 

Table 4.16. The soil types and the corresponding K-factor in the study catchment 

Soil Type Soil Texture 
K Factor  

(t ha h/ha/MJ/mm) 

Area 

(ha) (%) 

Eutric Gleysols (Ge) Clay 0.26 164,959 27% 

Gleyic Luvisols (Lg) Clay Loam 0.30 204,534 34% 

Dystric Nitosols (Nd) Clay 0.26 165,639 27% 

Orthic Acrisols (Ao) Clay Loam 0.27 70,040 12% 

Total 605,170 100% 

The values of land cover management factor (C-factor) and the values of conservation 

practice (P-factor) were based on the literatures. As shown in Figure 4.6, the spatial 

distribution of the value of C-factors was in the range of 0.001 to 0.5, while the value of P-

factor ranged from 0.5 to 1 (Figure 4.6c,d).  

The study also determined that the highest erodibility values were found in the upper 

regions of the catchment. This indicates that the soils in these areas have stability and low 

infiltration rates; therefore, they are susceptible to erosion in the event of large flows. 
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Figure 4.6. Spatial distribution of: (a,b) cover management (C-factor) and (c,d) 

supporting practices (P-factor) 

 

4.3.2. Impact of LULC Changes on Soil Erosion 

The RUSLE factors were multiplied in ArcGIS 10.3 spatial analyst tool (zonal 

statistic) to get the spatiotemporal variations in annual soil erosion rate for the period 2002–

2015, and the results are provided in Tables 4.17 and 4.18 and Figure 4.7. The study revealed 

that the soil loss caused by sheet and rill erosion in Stung Sangkae catchment was in the 

range of 0–60 t/ha/y in 2002 to 0–63 t/ha/y in 2015 (Table 4.17). In 2002, the total soil loss 

was 1,604,234 tons distributed over the catchment, while the amount of total soil loss in 

2015 was 3,343,216 tons (Table 4.18), which happened mainly in the upland of the 

catchment (Figure 4.7). 

In terms of the severity classes of soil loss, the results illustrated that 76.6% of the 

study areas experienced a very low rate of severe soil erosion. Cumulatively, the annual 

contribution of the low severe soil erosion class is highest due to the expansive extent of 

their occurrence. These areas cannot be ignored in the agricultural management of soil 

erosion, because soil loss in these areas will systematically reduce soil quality by removing 
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silt, clay, and organic components that play a vital role in keeping the soil water holding 

capacity and structural integrity (Sanchez et al., 2003). 

The study also determined that the highest erodibility values (Figure 4.7) were found in 

the upper regions of the catchment. This indicates that the soil in these areas have stability and 

low infiltration rates; therefore, they are susceptible to erosion in the event of large flows. The 

soil erosion rates between 0.2 and 62.9 t/ha/y (Table 4.17) estimated for the catchment were 

within similar studies carried out in the MRB. According to Chuenchum et al. (2020), in the 

Lancang MRB, soil erosion loss was mainly classified as moderate erosion in 45% of the study 

area. Furthermore, in the area around Tenle Sap’s soil erosion, it was found that its erosion level 

was extreme, with more than 80 t/ha/y (Chuenchum et al., 2020). Chuenchum et al. (2020) 

reported that the soil erosion of the lower MRB was 198.2 t/km2/y (1.9 t/ha/y), which represents 

approximately 64% of the total occurrence of soil erosion in the MRB. However, the results of 

Chuenchum et al. (2020) were close to the average values from the previous studies (Thuy and 

Lee, 2017), where soil erosion average was found to be between 1,400 to 8,500 t/km2/y. The 

differences in these findings may be mainly because of R-factor and LS-factor values, as 

Chuenchum et al. (2020) found that the values of R-factor and LS-factor were 65.6–524.3 

MJ.mm/(ha.hr.y) and LS-factor were in the range of 0–336. Meanwhile, Thuy et al. (2017) found 

that the R-factor was 1,886–9,725 MJ.mm/(ha.hr.y), and LS-factor was from 0.001 to 31.9. 

Kogo et al. (2020) emphasized that due to the variability of topographic features, erodibility, 

erosivity, and vegetation entrances, the estimated soil erosion rate varies between regions. Based 

on the Marondedze et al. (2020), in the tropical condition, the average soil loss rates of 5/t/ha/y 

were found in the previous studies (Bamutaze, 2015; Lufafa et al., 2003) while it also mentioned 

that a soil loss limit could be 11t/ha/y accepted as reasonably average annual loss due to soil 

erosion. However, Hudson (1995) believes that for sensitive and fragile lands, the rate of average 

soil loss tolerance of 2 t/ha/y can be recommended. Additionally, the potential and actual case 

studies of soil erosion have verified the sensitivity of the C and the P-factors to soil erosion. 

Natural vegetation covers, such as the forests (evergreen forest, deciduous forest, and mixed 

forest) in catchment decreased dramatically around 50,379.8 ha (8.32%), 20,136.4 ha (3.33%), 

and 10,650.6 ha (1.76%) from 2002 to 2015 (Tables 4.2 and 4.11 and Figure 4.7). Therefore, if 

forest area is converted into agricultural lands, the rate of soil erosion will increase significantly, 

especially in the upper reaches (Rangsiwanichpong et al., 2018). However, it is reported that the 

RUSLE model lacks the ability to calculate soil losses caused by gully or river channel erosion 

caused by raindrops (Wischmeier and Smith, 1978; Renard et al., 1997). Hence, it should be 

considered that the soil erosion rates found in this study mainly comes from sheet, rill (produced 
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by runoff) and inter-rill (affected by raindrops on the ground) erosion. However, these are the 

most common processes leading to extensive soil loss in farmland (Borrelli et al., 2017). 

 

Table 4.17. Distribution of soil erosion loss under different severity classes in 

Sangkae catchment from 2002 to 2015 

Severity 

Classes 

Soil Loss 

(t/ha/y) 

JICA 2002 MRC 2015 

Net 

Change 

(ha) 

Area Soil Loss 

(t/ha/y) 

Area Soil Loss 

(t/ha/y) 
 

 (ha) (%) (ha) (%) 

Very low <2 484,089 80.0 0.2 443,439 73.3 0.2 −40,650 

Low 2–5 52,646 8.7 3.2 50,897 8.4 3.3 −1,749 

Moderate 5–10 28,854 4.8 7.0 33,416 5.5 7.1 +4,562 

Severe 10–20 18,961 3.1 13.9 25,023 4.1 14.3 +6,062 

Very severe 20–40 11,463 1.9 27.5 22,940 3.8 28.5 −11,477 

Extremely Severe >40 9,157 1.5 60.0 29,455 4.9 62.9 −20,298 

Total Area  605,170 100.0  605,170 100.0   

 

Table 4.18. Soil erosion severity classes and gross soil loss in Stung Sangkae 

catchment from 2002 to 2015 

Severity 

Classes 

Soil Loss 

(t/ha/y) 

JICA 2002 MRC 2015 Total Annual Soil Loss 

Area Area 2002 2015 

(ha) (%) (ha) 

(

%

) 

(tons) (%) (tons) (%) 

Very low <2 484,089 80.0 443,439 
73.

3 
104,958 6.5 77,615 2.3 

Low 2–5 52,646 8.7 50,897 8.4 169,155 10.5 166,630 5.0 

Moderate 5–10 28,854 4.8 33,416 5.5 201,419 12.6 237,254 7.1 

Severe 10–20 18,961 3.1 25,023 4.1 263,691 16.4 357,164 10.7 

Very severe 20–40 11,463 1.9 22,940 3.8 315,430 19.7 653,124 19.5 

Extremely 

Severe 
>40 9157 1.5 29,455 4.9 549,581 34.3 1,851,429 55.4 

Total Area  605,170 100.0 605,170 
10

0.0 
1,604,234 100.0 3,343,216 100.0 

 

The estimated rate of soil erosion was categorized into five severity classes such as very 

low (0–2 t/ha/y), low (2–5 t/ha/y), moderate (5–10 t/ha/y), severe (10–20 t/ha/y), very severe 

(20–40 t/ha/y) and extremely severe (>40 t/ha/y), as shown in Tables 4.7 and 4.8. The results 

show that the areas experienced very low erosion rates, which were dominant in the study area, 

covering 484,089 ha (80.0%) that the average soil loss was 0.2 t/ha/y and 443,439 ha (73.3%) 

that the average soil loss was 0.2 t/ha/y in the years 2002 and 2015, respectively, while the areas 

affected by the extreme erosion was 9157 ha (1.5%) and 29,455 ha (4.9%) with the average soil 
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loss of 60 t/ha/y and 63 t/ha/y in the years 2002 and 2015, respectively. In 2002, the areas that 

experienced moderate erosion (7 t/ha/y), severe erosion (13.9 t/ha/y) and very severe erosion 

(27.5 t/ha/y) were 28,854 ha, 18,961 ha and 11,463 ha, respectively. In 2015, areas that 

experienced moderate erosion (7.1 t/ha/y), severe erosion (14.3 t/ha/y) and very severe erosion 

(28.5 t/ha/y) were 33,416 ha, 25,023 ha and 22,940 ha, respectively. 

 

 

Figure 4.7. Spatial distribution of soil loss in the sub-catchment within the study area 
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4.3.3. Effect of Elevation and Slope on Soil Erosion 

The elevation of the study catchment was divided into five different zoning areas, and 

the corresponding soil erosion rates were computed accordingly (Table 4.19). The soil loss 

rate at elevations less than 300 m (529,855 ha) was 2.7 t/ha/y in 2002, and 5.2 t/ha/y in 2015, 

and the change was the highest soil loss amounts to 2.5 t/ha/y. The rate of soil loss for the 

elevation of 300–600 m (39,347 ha) was 0.8 t/ha/y in 2002 and 0.9 t/ha/y in 2015. In contrast, 

the rate of soil loss for the elevation of 600–900 m (29,454 ha) and 900–1200 m (6,065 ha) 

was 0.4 t/ha/y and 0.9 t/ha/y in 2002 and 0.3 t/ha/y and 0.7 t/ha/y in 2015. The results 

indicated a decrease in soil loss of about 0.1 t/ha/y and 0.3 t/ha/y that was realized at 

elevations of 600–900 m (29,454 ha) and those below 1200 m (6,065 ha), respectively, while 

at the elevation of 1200–1500 m (449 ha), the amount of soil erosion was not changed (0.4 

t/ha/y). 

Table 4.19.  Estimation of soil erosion rates and net changes in different elevation areas 

No 
Elevation 

(Meters) 

Area Erosion (t/ha/y) Net Change 

(t/ha/y) (ha) (%) 2002 2015 

1 0–300 529,855 87.6 2.7 5.2 2.5 

2 300–600 39,347 6.5 0.8 0.9 0.1 

3 600–900 29,454 4.8 0.4 0.3 −0.1 

4 900–1200 6,065 1.0 0.9 0.7 −0.3 

5 1200–1500 449 0.1 0.4 0.4 0.0 

 

The amount of soil loss was additionally distributed according to the slope of 

occurrence (Table 4.20). The soil erosion rate increased with the increase of slope. The 

lowest was 0.8 t/ha/y in 2002 and 1.7 t/ha/y in 2015, which occurred in slopes that were less 

than 2° (100,579 ha). In slopes of 2–5° (212,830 ha), the soil loss rates were 1.7 t/ha/y in 

2002 and 3.6 t/ha/y in 2015. In addition, the soil loss rates of slopes of 5–10° (171,084 ha) 

were 3.6 t/ha/y in 2002 and 9.6 t/ha/y in 2015, while the slope of 10–15° (59,375 ha) was 

6.4 t/ha/y in 2002 and 17.7 t/ha/y in 2015. For the slopes of 15–30° (55,173 ha), was 7.2 

t/ha/y in 2002 and 16.1 t/ha/y in 2015. Slopes of more than 30° (6,129 ha) had soil erosion 

rates of 16.3 t/ha/y in 2002 and 27.6 t/ha/y in 2015. 

 

 

 



  

130 

Table 4.20.  Soil erosion in slope zones and net changes between the years 2002 and 

2015 based on FAO slope classification 

No 
Slope Classes 

(Degree) 

Area Erosion (t/ha/y) Net Change 

(t/ha/y) (ha) (%) 2002 2015 

1 0–2 100,579 16.6% 0.8 1.7 0.8 

2 2–5 212,830 35.2% 1.7 3.6 1.9 

3 5–10 171,084 28.3% 3.6 9.6 6.0 

4 10–15 59,375 9.8% 6.4 17.7 11.3 

5 15–30 55,173 9.1% 7.2 16.1 8.9 

6 >30 6,129 1.0% 16.3 27.6 11.3 

 

4.3.4. Contribution of Land Use and Land Cover Changes to Soil Erosion and Its 

Conversions 

The relationship between LULC and estimated soil erosion was analyzed by 

overlaying LULC and the soil erosion maps in 2002 and 2015 (Table 4.11). This relationship 

is considered to be a valuable tool to monitor patterns of LULC change and the risk of soil 

erosion (Marondedze and Schütt, 2020; Khosrokhani and Pradhan, 2014). In comparison 

with the soil erosion based on the types of land use and land cover, the results revealed that 

human activities mainly influenced soil erosion concerning soil erosion risk, which was 

higher in rain-fed agricultural land and paddy field, highlighting their vulnerability to water-

induced erosion, as compared to areas under forests (evergreen forest and deciduous forest), 

grassland, shrubland and built-up area. This can be explained by the intensive cultivation of 

crops in the Battambang province of Cambodia, the country’s largest rice-producing 

province. As stated in the introduction (MRC, 2016) the area of rice production increased 

from 2.72 million ha in 2009 to 3.05 million ha in 2013. In the catchment, farmers practice 

conventional agricultural methods for crop production, leading to soil degradation. This 

tends to cause a higher rate of erosion and loss of soil organic matter content, which affects 

the stability of soil aggregate (Kogo et al., 2020; Barbera et al., 2012). 

The results indicated that under LULC conditions in 2002, it is estimated that about 

1,903,554 tons of soil were lost, while the estimated average soil loss in 2015 was 4,538,331 

tons (Table 4.21). The results also revealed that the amount of soil loss increased almost 

twice during the investigated periods. For the agricultural land areas in Stung Sangkae 

catchment, averagely 463,962 tons (24.6%) of soil loss was estimated for 2002, while an 

increase of up to 3,757,018 tons (81.5%) of soil loss was estimated for the same land use 
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type for 2015. Likewise, the estimated soil loss of land use types of “barren land” and “built-

up area” increased slightly from 1240 tons (0.1%) in 2002 to 51,823 tons (1.2%) in 2015 and 

from 14,748 tons (1.2%) in 2002 to 147,967 tons (3.2%) in 2015. In contrast, estimates of 

soil loss for land use types such as deciduous forests, evergreen forests, grasslands, mixed 

forests, and paddy field and so on were decreased. Particularly there was a significant decline 

of soil loss for the land use of grassland where the estimated soil loss was 241,922 tons 

(12.5%) in 2002 to 49,179 tons (1.0%) in 2015; and for the mixed forest it decreased from 

797,562 tons (41.9%) in 2002 to 129,349 tons (2.8%) in 2015. For the land use types of 

deciduous and evergreen forest, the estimated soil losses were 83,370 tons (4.4%) and 37,189 

tons (1.9%) in 2002 and 28,244 tons (0.6%) and 33,443 tons (0.7%) in 2015, respectively. 

Table 4.21.  Distribution of soil erosion loss under various types of land use and 

land cover in Stung Sangkae catchment 

LULC 

Classes 

JICA 2002 MRC 2015 

Soil Loss  

(tons) 

Area 
Soil Loss  

(tons) 
Area 

(ha) (%)  (ha) (%) 

Agricultural land 463,962 (24.6%) 25,627.2 4.24 3,757,018 (81.5%) 152,742.3 25.24 

Barren land 1240 (0.1%) 149.2 0.02 51,823 (1.2%) 274.0 0.04 

Built-up area 14,748 (0.7%) 1702.8 0.28 147,967 (3.2%) 20,870.1 3.45 

Deciduous forest 83,370 (4.4%) 74,524.7 12.31 28,244 (0.6%) 24,144.9 3.99 

Evergreen forest 37,189 (1.9%) 11,0474.4 18.26 33,443 (0.7%) 90,338.0 14.93 

Grassland 241,922 (12.5%) 79,496.0 13.14 49,179 (1.0%) 29,394.2 4.86 

Marsh and swamp 305 (0.1) 280.3 0.05 73 (0.1) 35.8 0.01 

Mixed forest 797,562 (41.9%) 75,361.5 12.45 129,349 (2.8%) 64,710.9 10.69 

Paddy field 185,115 (9.7%) 92,784.8 15.33 234,464 (6.3%) 144,931.5 23.95 

Shrubland 78,143 (4.1%) 141,689.0 23.41 106,771 (2.6%) 74,019.0 12.23 

Water bodies 0 3080.1 0.51 0 3709.4 0.61 

Total Area 1,903,554 605,170.0 100.0 4,538,331 605,170.0 100.0 

 

The soil loss distribution of different types of LULC showed that the amount of soil 

loss from agricultural land increased the most, from 463,962 tons (24.6%) to 3,757,018 tons 

(81.5%). In comparison, soil erosion in the built-up areas also increased dramatically from 

14,748 tons (0.7%) in 2002 to 147,967 tons (3.2%) in 2015 (Table 4.21). In contrast, other 

LULC types that had significantly lower soil loss were forest lands, paddy field and 

grass/shrubland, accounting for 48.2%, 4.1%, and 9.7% of soil loss in 2002 and 6.3%, 16.6%, 

and 3.7% in 2015, respectively (Figure 4.8).  
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Forests, grassland and shrubland areas are also prone to soil erosion. However, due to 

better soil cover, the rate of erosion in these areas is lower than that of agricultural land and 

paddy fields. Table 4.21 shows that the forest lands under mixed forest experienced the 

highest soil erosion among the other types of land uses caused by the forest clearance by 

farmers to expand agricultural productivities. This observation aligns with a recent finding 

by Kong et al. (2019), which demonstrated that from 2002 to 2010, forest conversion was 

relatively more intensive and homogenous in Pailin Province where the Stung Sangkae 

catchment covers almost one-third part of it. If the trend of transforming forestlands to 

agricultural lands continues to increase, the possibility of soil erosion will be further 

expanded, which will affect the sustainability of agricultural lands in the catchment for crop 

production. Therefore, agricultural deforestation must be minimized, especially on steep 

slopes. Additionally, it is necessary to implement agricultural management practices, such 

as on-farm conservation agriculture practices (CAP), water conservation and management, 

agroforestry practices, vegetation cover restoration and the creation of slopes terraces (Kogo 

et al., 2020) to achieve sustainable control of soil erosion to improve the productivity of 

growing crops. 

 

 

Figure 4.8. Total soil erosion contributed by various land use and land cover types 
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The spatial distribution of LULC conversion and its contribution to soil erosion are 

shown in Figure 4.9 and Table 4.22. It should be noted that each LULC category were 

converted to different land use types during the studied period between 2002 and 2015. 

However, Table 4.22 presents only the major LULC conversions from the LULC categories. 

The primary conversion of LULC changes are agricultural land, shrubland and paddy field, 

while the highest soil erosion rate happened to agricultural land ranging from 15.6 to 31.3 

t/ha, and the soil erosion rate of shrubland is from 0.5 to 4.8 t/ha, while paddy field ranges 

from 1.9 to 3.0 t/ha. The mean soil erosion rate of the converted LULC varied from 0.3 to 

22 t/ha (Figure 4.9). All LULC categories were changed to agricultural land which occupied 

the area of 125,546 ha which mainly converted from mixed forest (57,862.7 ha), deciduous 

forest (37,911.5 ha), evergreen forest (19,309.7 ha), shrubland (14,775.3 ha), grassland 

(6,348 ha) and paddy field (4,114 ha); resulted in total soil loss of 1,597,728.4 ha, 878,981.9 

ha, 603,570.1 ha, 117,116.3 ha, 258,200.8 ha and 64,104.8 ha, respectively. 

 

 

Figure 4.9. Spatial distribution of the conversions of the land use and cover (LULC) 

between 2002 and 2015 

 

 

 

 

 



  

134 

Table 4.22.  Distribution of soil erosion loss under different LULC conversion 

categories in the in Stung Sangkae catchment 

No LULC Categories 
Unchanged  

Area (ha) 

Changed 

Area (ha) 

Major LULC 

Conversions 

Changed Area 

from LULC 

Categories (ha) 

Soil 

Erosion 

(t/ha) 

Soil 

Erosion 

(tons) 

1 Agricultural land 11,299 14,328 
Built-up area 11,789.3 7.2 85,319.6 

Paddy field 1,371.4 3.0 4,083.8 

2 Deciduous forest 20,712 53,813 

Agricultural land 37,911.5 23.2 878,981.9 

Shrubland 9,688.0 2.3 22,501.6 

Evergreen forest 3,583.2 0.2 611.5 

3 Evergreen forest 83,150 27,324 
Agricultural land 19,309.6 31.3 603,570.1 

Shrubland 6,878.9 4.8 32,931.1 

4 Grassland 12,396 67,100 

Paddy field 35,168.8 1.9 67,545.0 

Shrubland 18,624.0 0.5 9,767.2 

Agricultural land 6,348.1 18.4 117,116.3 

5 Mixed forest 1,462 73,900 
Agricultural land 57,862.7 27.6 1,597,728.4 

Shrubland 9,621.6 3.8 36,994.1 

6 Paddy field 82,643 10,142 
Built-up area 4,777.6 5.6 26,819.6 

Agricultural land 4,114.1 15.6 64,104.8 

7 Shrubland 27,628 114,061 

Mixed forest 56,712.5 2.1 116,896.8 

Paddy field 23,401.6 2.7 62,869.5 

Grassland 16,699.6 1.8 30,334.7 

Agricultural land 14,775.3 17.5 258,200.8 

 

4.4. Discussions 

This study applied the empirical RUSLE model to predict potential soil erosion in 

Stung Sangkae catchment, northwestern part of Cambodia, by integrating the RUSLE model 

into a GIS application based on the national LULC changes in the catchment between 2002 

and 2015. As there is no available report or research on soil erosion with the RUSLE model 

applied in Cambodia, particularly to the catchment, the computation of the potential soil 

erosion is based on the literature on the assumption of land management and supporting 

practice; potential erosion is understood as the erosion processes that are only controlled by 

physical factors (Marondedze and Schütt, 2020). The R-factor is the main driver of soil 

erosion. There are many equations to estimate the rainfall erosivity factor based on the 

preferences of the individual researchers and the regions. 

A review of the RUSLE model (Benavidez et al., 2018) showed that due to the detailed 

data requirements for the standard (R)USLE computation of rainfall erositivity, alternative 

equations have been used when studying in areas with less detailed data, depending on the 

temporal resolution and availability of the precipitation data. In the study, the equation 

recommended by El-Swaify et al. (1987), adopted by many researchers around the world, 

mostly in Africa (e.g., Ethiopia, Kenya, Zimbabwe) and the Asia (e.g., China, India, 

Malaysia, Nepal, Thailand, Philippine), particularly the South-East Asian countries and 
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MRB countries were chosen for soil erosion analysis. At the same time, the K-factor was 

calculated following the equation (Williams, 1995). According to Yang et al. (2013), soil 

loss is proportional to rainfall erosivity index when all the other factors are held constant; 

therefore, it is an important factor in the model. The study showed that the spatial distribution 

of rainfall-runoff erosivity in the catchment was consistent with the amount of precipitation 

received in various parts of the study catchment. The highest calculated erosivity indices 

were more in the southwestern regions of the study area, mainly in Phnom Samkos Wildlife 

Sanctuary, compared with central areas and floodplain areas. In Cambodia, the average 

annual rainfall is 1400 mm in the central lowland regions and can reach 4000 mm in some 

coastal areas or in the highlands (Thoeun, 2015). As a result, the high rainfall erosivity 

indices in the region are more likely to occur during the rainy season which runs from mid-

May to early October. 

The study also determined that the highest erodibility values were found in the upper 

regions of the catchment. This indicates that the soils in these areas have stability and low 

infiltration rates; therefore, they are susceptible to erosion in the event of large flows. The 

soil erosion rates between 0.2 and 62.9 t/ha/y (Table 4.7) estimated for the catchment were 

within similar studies carried out in the MRB. According to Chuenchum et al. (2020), in the 

Lancang MRB, soil erosion loss was mainly classified as moderate erosion in 45% of the 

study area. Furthermore, in the area around Tenle Sap’s soil erosion, it was found that its 

erosion level was extreme, with more than 80 t/ha/y (Chuenchum et al., 2020). Chuenchum 

et al. (2020) reported that the soil erosion of the lower MRB was 198.2 t/km2/y (1.9 t/ha/y), 

which represents approximately 64% of the total occurrence of soil erosion in the MRB. 

However, the results of Chuenchum et al. (2020) were close to the average values from the 

previous studies (Thuy and Lee, 2017), where soil erosion average was found to be between 

1,400 to 8,500 t/km2/y. The differences in these findings may be mainly because of R-factor 

and LS-factor values, as Chuenchum et al. (2020) found that the values of R-factor and LS-

factor were 65.6–524.3 MJ.mm/(ha.hr.y) and LS-factor were in the range of 0–336. 

Meanwhile, Thuy et al. (2017) found that the R-factor was 1,886–9,725 MJ.mm/(ha.hr.y), 

and LS-factor was from 0.001 to 31.9. Kogo et al. (2020) emphasized that due to the 

variability of topographic features, erodibility, erosivity, and vegetation entrances, the 

estimated soil erosion rate varies between regions. Based on the Marondedze et al. (2020), 

in the tropical condition, the average soil loss rates of 5/t/ha/y were found in the previous 

studies  (Bamutaze, 2015; Lufafa et al., 2003) while it also mentioned that a soil loss limit 



  

136 

could be 11t/ha/y accepted as reasonably average annual loss due to soil erosion. However, 

Hudson (1995) believes that for sensitive and fragile lands, the rate of average soil loss 

tolerance of 2 t/ha/y can be recommended. Additionally, the potential and actual case studies 

of soil erosion have verified the sensitivity of the C and the P-factors to soil erosion. Natural 

vegetation covers, such as the forests (evergreen forest, deciduous forest, and mixed forest) 

in catchment decreased dramatically around 50,379.8 ha (8.32%), 20,136.4 ha (3.33%), and 

10,650.6 ha (1.76%) from 2002 to 2015 (Tables 4.2 and 4.21 and Figure 4.3). Therefore, if 

forest area is converted into agricultural lands, the rate of soil erosion will increase 

significantly, especially in the upper reaches (Rangsiwanichpong et al., 2018). However, it 

is reported that the RUSLE model lacks the ability to calculate soil losses caused by gully or 

river channel erosion caused by raindrops (Wischmeier and Smith, 1978; Renard et al., 1997). 

Hence, it should be considered that the soil erosion rates found in this study mainly comes 

from sheet, rill (produced by runoff) and inter-rill (affected by raindrops on the ground) 

erosion. However, these are the most common processes leading to extensive soil loss in 

farmland (Borrelli et al., 2017).  

In terms of the severity classes of soil loss, the results illustrated that 76.6% of the 

study areas experienced a very low rate of severe soil erosion. Cumulatively, the annual 

contribution of the low severe soil erosion class is highest due to the expansive extent of 

their occurrence. These areas cannot be ignored in the agricultural management of soil 

erosion, because soil loss in these areas will systematically reduce soil quality by removing 

silt, clay, and organic components that play a vital role in keeping the soil water holding 

capacity and structural integrity (Sanchez et al., 2003). 

We also estimated gross soil erosion in the catchment. The results showed significant 

change in mean soil erosion due to LULC changes during the investigated periods between 

2002 and 2015 LULC, in which agricultural land showed a significant increase. In contrast, 

forest lands (evergreen forest, deciduous forest and mixed forest), grassland and shrubland 

declined significantly. Soil erosion was considerably higher on cropland (agricultural land 

and paddy field), built-up area, shrubland and barren land, and low in forested areas 

(evergreen forest, deciduous forest and mixed forest) and grassland. 

The relationship between LULC and estimated soil erosion was analyzed by 

overlaying LULC and the soil erosion maps in 2002 and 2015 (Table 4.21). This relationship 

is considered to be a valuable tool to monitor patterns of LULC change and the risk of soil 

erosion (Marondedze and Schütt, 2020; Khosrokhani and Pradhan, 2014). In comparison 
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with the soil erosion based on the types of land use and land cover, the results revealed that 

human activities mainly influenced soil erosion concerning soil erosion risk, which was 

higher in rain-fed agricultural land and paddy field, highlighting their vulnerability to water-

induced erosion, as compared to areas under forests (evergreen forest and deciduous forest), 

grassland, shrubland and built-up area. This can be explained by the intensive cultivation of 

crops in the Battambang province of Cambodia, the country’s largest rice-producing 

province. As stated in the introduction (MRC, 2016) the area of rice production increased 

from 2.72 million ha in 2009 to 3.05 million ha in 2013. In the catchment, farmers practice 

conventional agricultural methods for crop production, leading to soil degradation. This 

tends to cause a higher rate of erosion and loss of soil organic matter content, which affects 

the stability of soil aggregate (Kogo et al., 2020; Barbera et al., 2012). 

Forests, grassland and shrubland areas are also prone to soil erosion. However, due to 

better soil cover, the rate of erosion in these areas is lower than that of agricultural land and 

paddy fields. Table 4.21 shows that the forest lands under mixed forest experienced the 

highest soil erosion among the other types of land uses caused by the forest clearance by 

farmers to expand agricultural productivities. This observation aligns with a recent finding 

by Kong et al. (2019), which demonstrated that from 2002 to 2010, forest conversion was 

relatively more intensive and homogenous in Pailin Province where the Stung Sangkae 

catchment covers almost one-third part of it (Figure 4.1). If the trend of transforming 

forestlands to agricultural lands continues to increase, the possibility of soil erosion will be 

further expanded, which will affect the sustainability of agricultural lands in the catchment 

for crop production. Therefore, agricultural deforestation must be minimized, especially on 

steep slopes. Additionally, it is necessary to implement agricultural management practices, 

such as on-farm conservation agriculture practices (CAP), water conservation and 

management, agroforestry practices, vegetation cover restoration and the creation of slopes 

terraces (Kogo et al., 2020) to achieve sustainable control of soil erosion to improve the 

productivity of growing crops. 

 

4.5.  Conclusions of This Chapter 

This study applied the empirical RUSLE model to predict potential soil erosion in 

Stung Sangkae catchment, northwestern part of Cambodia, by integrating the RUSLE model 

into a GIS application based on the national LULC changes in the catchment between 2002 

and 2015. As there is no available report or research on soil erosion with the RUSLE model 
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applied in Cambodia before, particularly to the catchment, the computation of the potential 

soil erosion is based on the literature on the assumption of land management and supporting 

practice; potential erosion is understood as the erosion processes that are only controlled by 

physical factors.  

The map of LULC and findings clearly illustrate extensive soil erosion of very low to 

moderate severity rates ranging from 0.2 to 7.1 t/ha/y. With the application of the RUSLE 

equation show that 87% of the basin area is exposed to a low to moderate erosion risk (<10 

t/ha/y) and 4.1% basin is in severe moderate risk based on the land use in 2015. The highest 

erosion rates of 14.3 to 62.9 t/ha/y were found in parts of the upland of the Stung Sangkae 

catchment, mainly due to steep slopes, high rate of erosion and degradation of the vegetation. 

Between 2002 and 2015, considerable changes in soil loss rate were observed in agricultural 

land. The forest lands decreased significantly during the investigated period, notably a 

massive shift in deciduous and mixed forest converted to agricultural land, paddy rice fields 

and other types of land use. Therefore, it is necessary to integrate protection measures at the 

farm level and target areas of high risk of erosion, mainly the degraded lands along the steep 

slopes, to limit the conversion of forest areas for agriculture and minimize the rate of erosion 

where the land is bare or with low vegetation cover. Some of the recommended measures to 

prevent soil erosion includes on-farm conservation agriculture practices (CAP), water 

conservation and management, agro-forestry practices, vegetation cover restoration and 

terracing. Future soil erosion assessment work in the study area should examine soil loss due 

to gully erosion, which is not currently possible using the RUSLE model. Additionally, 

calibration of the RUSLE results through field experiments helps to verify the accuracy of 

the estimated soil erosion in the study area. 
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CHAPTER 5 

Effects of Reforestation or Agroforestry on Hydrological Responses in 

Stung Sangkae River Catchment 

 

5.1. Introduction 

Reforestation is essential to reduce or reverse biodiversity loss and mitigate climate 

change (Cunningham et al., 2015). Restoring forests can restore the biogeochemical cycling 

of carbon, oxygen, and nutrients between the atmosphere, biomass, 

pedosphere, and hydrosphere (Arneth et al., 2010). Reforestation of agricultural land can 

improve biodiversity, resulting in increased primary production, reduced susceptibility to 

invasion by exotic species, and increased ecological resistance to pressures such as climate 

change (Hooper et al., 2005). It offers several ecosystem facilities, such as improving soil 

water infiltration conditions, soil erosion control, and providing wood–related products like 

timber and fuelwood (Ong et al., 2006). Agroforestry is a prospective solution to reduce the 

rate of deforestation and overcome the food crisis problem (FAO, 2022; Mulia and Phuong, 

2021). This is an integrated approach to a sustainable land-use system (traditional and 

modern) in which there are interactions between ecological and economic components 

(timber/forestry plants with seasonal/perennial tree crops, livestock, or fisheries inside or 

outside forest areas). Agroforestry provides ecosystem services, including climate change 

mitigation, benefits for smallholders, and prospects for sustainable food production (Bettles 

et al., 2021; Bishaw et al., 2022). The fertility potential of soils under forests and the need 

to increase crop production makes forests a target for conversion to agricultural land through 

deforestation (Laurance et al., 2014). Therefore, there would be high competition for land 

between forests and agricultural production in some regions of the world, particularly in the 

tropics  (Laurance et al., 2014).  

In such situations, agroforestry or reforestation is seen as a compromise between 

agricultural production and the provision of forest/tree–related benefits (Nair and Garrity, 

2012). In agroforestry systems, trees in different arrangement forms are integrated into 

agricultural land (Nyaga et al., 2015). The World Commission on Water estimates that 

demand for water will increase by approximately 50% over the next 30 years, and about half 

of the world’s population will live in severe water stress conditions by 2025 (Ong et al., 

2006). The urgent need to increase water productivity is a growing global concern. Mwangi 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/pedosphere
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/hydrosphere
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/arable-land
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et al. (2016) reported that the increase in the agroforest would result in a decrease in the 

runoff. Therefore, increasing agroforestry is one of the solutions to reduce flood values in 

the catchment. After more than a century of forest hydrology, several controversial issues or 

‘beliefs’ still hamper rational decision-making regarding land use. Several types of research 

summarized that forests increase rainfall, decrease runoff, regulate streamflow and increase 

dry-season streamflow (Wangpimool et al., 2013), reduce erosion, reduce floods, 

increase infiltration rates and soil moisture retention (Arancibia, 2013) improve water 

quality, minimizes the drought.  

The Stung Sangkae river catchment is one of the major river basins of Tonle Sap basin 

that have high encroachment of forest areas which has impacted the watersheds of the river 

catchment and causes flooding almost every year, with frequent social and economic 

damages (Provincial Department of Water Resource and Meteorology, 2013). 

Land use change due to increased cultivated land has severely impacted the watershed area 

and decreased soil quality (Department of Agricultural Land Resources Management, 2019). 

Moreover, agricultural and ecological system reserves in the lower reaches of the Sangkae 

River catchment have water shortage problems in the dry season (December-April). The loss 

of forest area increases the flood potential and drought impacts in the catchment. On the 

other hand, increasing forest area after returning agricultural lands to the forest reduces the 

wet season stream flow. It raises it in dry seasons, thus reducing flood potential in the wet 

season and drought severity in the dry season (Guo et al., 2008). A significant number of 

studies have reported the impacts of land use on runoff (Costa et al., 2003; Mao and 

Cherkauer, 2009; Mueller et al., 2009; Cao et al., 2009; Mohammad and Adam, 2010, 

Schilling et al., 2010). Ouyang et al. (2008) have indicated that the highest peak runoff value 

is hillside cropland with a slope larger than 15°, which had been converted from the forest. 

The lowest is hillside cropland with a slope larger than 25° converted into the forest when 

compared with the cropland and forest area conditions before the implementation of 

converting cropland to forest policy.  

In this regard, catchment management is necessary in order to protect the natural 

ecosystem as well as to achieve a sustainable use of agricultural land in degraded areas. Soil 

and water conservation practices also referred to as catchment management strategies 

(CMSs) are the primary steps of catchment management whose purpose is to enhance 

agricultural productivity and protect catchments. Specifically, they aim at decreasing runoff 

rates, improving soil fertility, retarding soil erosion, and thus increasing soil-moisture 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/infiltration
https://www.sciencedirect.com/science/article/pii/S2214581817302161#bib0010
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availability and groundwater recharge (WOCAT, 2007). Agroforestry has in particular, been 

the focus of many catchment management programs in the developing world (many 

countries in Africa, Asia, and Latin America whose economies are agriculture-driven) 

(World Agroforestry, 2021). Agroforestry has been considered a key pathway to restoring 

degraded ecosystems and achieving food security globally. Within these systems, 

reforestation efforts have been scaled up to combat the alarming deforestation and forest 

degradation rates. The contribution of trees to carbon sequestration, nitrogen fixation, and 

provision of a source of income has been ranked higher and is perceived as more sustainable 

than other CMSs (Speranza, 2010). However, to reap the numerous benefits offered by trees, 

it is imperative to determine at the catchment scale where and what proportion of land can 

reasonably be converted. Since trees consume more water than other vegetation (Mwangi et 

al., 2016; Kirschke et al., 2018) an improper allocation could magnify an already existing 

water scarcity situation. 

Moreover, CMSs threaten the productive capacity of catchments as their 

implementation may lead to losses in agricultural production. Thus, there is a need for a 

comprehensive and systematic understanding of the possible adverse effects of agroforestry 

and its combination with other CMSs on the different ecosystem services. Tools such as 

hydrologic models have been used to conceptualize the impacts of climatic and 

anthropogenic changes on the various sub-processes within the hydrologic cycle (Legesse et 

al., 2003).  

Therefore, the integration of forest cover for flood management and mitigation is a 

potential and cost-effective solution (Ellison et al., 2017; Jongman et al., 2015) for river 

management and development. Moreover, the Royal Government of Cambodia has a goal 

of maintaining at least 50% of its land under forest cover to contribute to the country's 

Sustainable Development Goals by 2030. 

 

5.2. Materials and Methodology 

The materials and methodology applied in section 3.2, which was already mentioned 

in chapter 3, were used in this chapter; however, some reforestation scenarios were made to 

understand the effects of reforestation on stream flow and soil erosion in the catchment, as 

described in the previous chapters. The location of the study area is shown in Figure 5.1.    

 

https://www.frontiersin.org/articles/10.3389/ffgc.2022.1046371/full#B71
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Figure 5.1. Location of the study area 

 

5.2.1. Reforestation scenarios 

The actual land use database, a digital map of land use in 2015, was defined as the 

baseline land use. Three scenarios were used to evaluate the effect of reforestation on stream 

flow and soil erosion in the Stung Sangkae River catchment, as shown in Table 5.1 and 

Figure. 5.1, 5.2, and 5.3. The scenario of an increased percentage of reforestation was based 

on the RGC’s policy that by 2030, the goal is to maintain at least 50% of its land under forest 

cover to contribute to the country's Sustainable Development Goals (RGC, 2018). The three 

scenarios were: 

Scenario-1: All areas of forest land (mixed and deciduous forest) were revived, and 

the other types of land use remained the same as the LULC MRC 2015 pattern. 15% of the 

forest land is reforested. 

Scenario-2: The area of agricultural land was reforested, and the other types of land 

use remained the same as the LULC MRC 2015 pattern. 25% of the forest land is reforested. 

Scenario-3: All the mixed forest, deciduous forest, and agricultural land were revived, 

and the other types of land use remained the same as the LULC MRC 2015 pattern. 40% of 

the forest land is reforested. 
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Table 5.1. Land use conditions in the three scenarios 

No LU categories 

Baseline-MRC Scenario-1 Scenario-2 Scenario-3 

Area Area Area Area 

ha % ha % ha % ha % 

1 Agricultural Land 152,742.3 25.2 152,742.3 25.2 - - - - 

2 Barren land 
274.3 0.0 274.3 0.0 274.3 0.0 274.3 0.0 

3 Built-up area 20,870.1 3.4 20,870.1 3.4 20,870.1 3.4 20,870.1 3.4 

4 Deciduous forest 24,144.9 4.0 - - 24,144.9 4.0 - - 

5 Evergreen forest 90,338.0 14.9 179,193.8 29.6 243,080.3 40.2 331,936.0 54.9 

6 Grassland 29,394.2 4.9 29,394.2 4.9 29,394.2 4.9 29,394.2 4.9 

7 Marshes and swamp 35.8 0.0 35.8 0.0 35.8 0.0 35.8 0.0 

8 Mixed forest 64,710.9 10.7 - - 64,710.9 10.7 - - 

9 Paddy field 144,931.5 23.9 144,931.5 23.9 144,931.5 23.9 144,931.5 23.9 

10 Shrubland 74,019.0 12.2 74,019.0 12.2 74,019.0 12.2 74,019.0 12.2 

11 Water bodies 3,709.6 0.6 3,709.6 0.6 3,709.6 0.6 3,709.6 0.6 

Total 605,170.5 100.0 605,170.5 100.0 605,170.5 100.0 605,170.5 100.0 

 

   
a).  Grassland    b). Broadleaved deciduous forest  

   
c).  Mixed forest    d). Broadleaved ever-green forest 

Figure 5.2. Land use types in the study area  
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a). Reforestation scenario-1 in the catchment (15% forest increased) 

 

b). Reforestation scenario-2 in the catchment (25% forest increased) 

 

c). Reforestation scenario-3 in the catchment (40% forest increased) 

Figure 5.3.  Reforestation scenario conditions in the Stung Sangkae River catchment 
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5.3. Results and Discussion 

5.3.1. Stream flow response to reforestation 

The reforestation changes in the Stung Sangkae River catchment in each scenario and 

baseline were used in the SWAT simulation to investigate the effect on stream flow. The 

result of the simulation in the whole catchment of annual stream flow of baseline land use 

and three reforestation scenarios are shown in Figure 5.4 and Table 5.2. It showed that 

implementing reforestation activities in the catchment could dramatically reduce the annual 

stream flow in the Stung Sangkae River catchment compared to the reference or baseline 

land use. However, for the Scenarios, 2 (25% of the reforested land) and 3 (40% of the 

reforested land), the annual streamflow is almost the same. Thus, the reforestation above 

25% is not recommended for implementation in the catchment. 

   

 

Figure 5.4.  Annual stream flow (cms) for baseline and reforest scenarios 

The effects of reforestation on stream flow, mainly seasonal stream flow, are more 

remarkable. The altered land use influences seasonal stream flow volumes. The volumes of 

seasonal stream flow of scenarios 1 - 3 and baseline are shown in Table 5.2. The results 

indicate that the volumes of seasonal stream flow in three scenarios decreased in the wet 

season and increased in the dry season compared with the baseline land use (Figure. 5.5). 

For the percentage of seasonal stream flow changes in scenarios 1 and 2, they decreased in 

the wet season at about 3%. They increased in the dry season also at about 3%. These stream 
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flows are more important for water resource management in the dry season and also for flood 

reduction in the wet season. This finding is aligned with the (Wangpimool et al., 2013).  

For the variation of streamflow in this study, the average in the reference period was 

significantly higher than that in the reforestation period, indicating that the flow velocity of 

streamflow was decreased by reforestation. This is likely because forest recovery through 

reforestation can effectively store water because of canopy interception, abundant 

underpants and forest floor, which leads to more soil infiltration and consequently more 

baseflow (Zhou et al., 2010).  

 

 

Figure 5.5.  Average monthly stream flow for baseline and reforestation scenarios 

In this study, relative contributions of reforestation to total streamflow had similar 

effects in terms of magnitude as those from climate variability, indicating that hydrological 

effects of forest changes might be the same as those caused by climatic variability in the 

studied watershed (Table 5.2). The percentage of the change is less than one percent in wet 

and dry season, and if compared to the flow volume, it was reduced to around 50 million 

cubic meters (MCM) compared to the baseline. This conclusion is consistent with various 

studies. For example, the long-term and large-scale forest changes, including deforestation 

and reforestation, contributed to 50.31% and 49.3% of streamflow variations, respectively, 

in the upper reach of the Poyang Lake watershed of China (Liu et al., 2015). Similar results 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Baseline 4.0 3.8 12.7 11.7 36.2 58.8 84.3 114.3 129.1 163.1 95.7 22.1

Scenario 1 4.2 3.7 12.8 12.4 36.4 55.0 80.9 113.4 128.4 163.3 97.8 23.4

Scenario 2 4.1 3.3 12.1 11.6 33.4 49.4 77.7 112.1 128.5 164.6 96.9 23.1

Scenario 3 4.1 3.4 12.1 11.6 33.4 49.5 77.9 112.1 128.5 164.9 96.5 22.9
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were also reported by Montenegro and Ragab (2012), Huang et al. (2016) and Li et al. (2017). 

However, some studies showed that the influences from climatic variability on regional 

discharge were more pronounced compared with those from forest change or land-use 

change. For example, Wei et al. (2018) quantitatively assessed the relative contributions of 

forest change and climatic variability on annual mean flow in forested watershed across the 

globe and found that average variation in annual streamflow ascribed to forest change is 31% 

while 69% from climate variability. This suggested that streamflow is more sensitive to 

climate variability on average at the global scale. Those inconsistent conclusions may be due 

to the difference in climate, the degree of forest changes, and spatial scale. 

 

Table 5.2. Annual stream flow (MCM) for baseline and reforest scenarios 

Scenarios 

Annual 

stream flow 

Wet season 

(May - Oct.) 

Dry season 

(Nov. – Apr.) 

MCM MCM % MCM % 

Baseline 1907.4 1,518.6 79.6 388.9 20.4 

Scenario-1 1,896.8 1,496.7 78.9 400.2 21.1 

Scenario-2 1,858.2 1,466.3 78.9 391.8 21.1 

Scenario-3 1,858.0 1,467.8 79.0 390.2 21.0 

 

The effects of reforestation on stream flow, mainly seasonal stream flow, are more 

remarkable. The altered land use influences seasonal stream flow volumes. The results 

indicate that the discharge of seasonal stream flow of three scenarios decreased in the wet 

season (May-October) and increased in the dry season (November-April) compared with the 

baseline land use (Table 5.2 and Figure 5.6). The finding agreed with Wangpimool et al. 

(2013). In Figure 5.6, it was shown that 25% of reforestation increased flow volume in the 

dry season, which will be suitable for water resource management in the dry season. 
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Figure 5.6.  Seasonal stream flows for baseline and reforestation scenarios 

 

5.3.2. Soil loss response to reforestation 

The study of the effect of reforestation on soil loss in the Stung Sangkae catchment 

by the Soil and Water Assessment Tool (SWAT) model application designated the land use 

in 2015 as the baseline land use and assigned 3 reforestation land use scenarios. The effects 

of reforestation on soil loss, especially annual and monthly soil loss, are significantly 

different (Table 5.3 and Figure 5.7). The LULC changes significantly impacted soil loss in 

the Stung Sangkae River catchment, even though the stream flow is not significantly 

changed. Table 5.3 shows that under scenario 1 and 2, the soil loss is significantly reduced 

almost 30% (28.4%=15.5 ton/ha) with 15% increased reforestation and 50% (47.5%=11.4 

ton/ha) with 25% increased reforestation in the catchment compared to the baseline soil loss 

(21.8 ton/ha) , respectively. For scenarios 2 and 3, the soil loss is almost unchanged. Thus, 

reforestation effectively prevents soil erosion in the catchment, particularly during the rainy 

season from August to October (Figure 5.7). However, 25% of reforestation  (40% of forest 

cover in the catchment) is enough to prevent soil erosion in the catchment as it is not 

significant if it is increased more than this recommendation. The result could contribute to 

the RGC’s policy toward the country's Sustainable Development Goals to maintain at least 

50% of its land under forest cover in 2030 (RGC, 2018). 
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Table 5.3. Annual soil loss based on baseline and 3 reforestation scenarios (ton/ha) 

No Year 
Baseline 

(ton/ha) 

Scenario-1 Scenario-2 Scenario-3 

ton/ha % ton/ha % ton/ha % 

1 2000 21.9 15.9 27.4 12.1 44.7 12.1 44.7 

2 2001 5.4 4.0 25.9 2.9 46.3 2.9 46.3 

3 2002 23.5 16.5 29.8 12.3 47.7 12.4 47.2 

4 2003 21.9 15.9 27.4 11.8 46.1 11.8 46.1 

5 2004 14.0 11.0 21.4 8.1 42.1 8.1 42.1 

6 2005 20.9 15.3 26.8 10.9 47.8 10.9 47.8 

7 2006 21.4 15.1 29.4 11.7 45.3 11.8 44.9 

8 2007 37.5 25.8 31.2 18.7 50.1 18.7 50.1 

9 2008 26.0 18.3 29.6 13.8 46.9 13.9 46.5 

10 2009 16.5 11.4 30.9 8.1 50.9 8.2 50.3 

11 2010 23.5 17.4 26.0 14.7 37.4 14.8 37.0 

12 2011 22.6 16.3 27.9 12.4 45.1 12.5 44.7 

13 2012 27.2 19.3 29.0 14.0 48.5 14.0 48.5 

14 2013 33.4 24.1 27.8 18.3 45.2 18.3 45.2 

15 2014 14.9 10.8 27.5 7.1 52.3 7.2 51.7 

16 2015 22.1 15.9 28.1 10.8 51.1 10.8 51.1 

17 2016 18.0 12.4 31.1 8.8 51.1 8.9 50.6 

18 2017 22.5 15.4 31.6 10.9 51.6 11.0 51.1 

19 2018 21.9 15.1 31.1 10.2 53.4 10.3 53.0 

 

 

Figure 5.7. Monthly soil loss based on baseline and 3 reforestation scenarios 

 

The effects of reforestation on seasonal soil loss are very significant. The results 

indicate that the seasonal soil loss of three scenarios significantly decreased in the wet season 

(May-October) and the dry season (November-April) compared with the baseline land use 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Baseline 0.9 3.7 6.5 3.4 10.8 32.5 31.2 55.2 102.4 116.7 42.9 2.2

Scenario 1 0.7 2.6 3.7 2.1 7.6 23.4 22.7 39.1 74.1 84.9 28.8 1.5

Scenario 2 0.6 2.2 1.8 0.8 5.1 16.2 16.0 27.8 55.0 66.9 20.7 1.1

Scenario 3 0.6 2.3 1.8 0.8 5.1 16.3 16.0 27.8 55.1 67.2 20.9 1.2
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(Figure 5.8). The 25% reforestation could significantly decrease soil erosion in the wet 

season. Moreover, the soil loss in each sub-catchment is also dramatically reduced due to 

increased reforestation. The soil erosion at the upstream catchment decreased significantly, 

particularly in sub-catchment no. 11, 13, 15, 16, 18, and 19 (Table 5.4). 

 

Figure 5.8. Soil loss based on season 

Table 5.4. Soil loss from subbasin of baseline land use, and with 3 reforestation land 

use scenarios (ton/ha) 

Subbasin Area (ha) Baseline Scenario-1 Scenario-2 Scenario-3 

1 12,384.1 17.2 16.2 16.2 16.2 

2 20,512 9.1 7.5 7.5 7.5 

3 3,693.6 0.5 0.4 0.4 0.4 

4 28,800.2 18.6 15.7 15.7 15.7 

5 3,843.0 13.5 10.6 10.6 10.6 

6 55,486.7 8.2 7.1 7.1 7.1 

7 12,185.1 12.5 8.3 6.8 6.8 

8 4,455.8 6.5 6.1 6.1 6.1 

9 56,913.7 4.0 3.5 3.5 3.5 

10 69,949.8 4.6 4.3 4.3 4.3 

11 33,473.9 38.6 21.0 13.1 13.1 

12 40,221.9 6.4 5.1 4.5 4.6 

13 1,548.3 29.3 19.7 17.2 17.3 

14 32,385.2 7.7 4.4 3.0 3.2 

15 45,275.3 40.2 25.5 13.4 13.7 

16 41,340.6 40.5 25.3 15.1 15.1 

17 19,966.2 8.3 7.1 6.3 6.3 

18 12,324.5 45.5 29.4 16.4 16.4 

19 110,409.4 22.3 13.8 6.8 7.1 
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5.4. Conclusion of This Chapter 

The study of the effect of reforestation on stream flow and soil erosion in the Stung 

Sangkae catchment by the SWAT model application designated the land use in 2015 as the 

baseline land use and assigned 3 reforestation land use scenarios. The estimated stream flow 

and soil erosion with the SWAT model showed an annual average stream flow of about 1,907 

MCM and an average annual soil loss of about 21.8 tons/ha. The average stream flow 

occurring during the wet season from May to October was about 1,517 MCM (80% of the 

average annual stream flow), and in the dry season, about nearly 389 MCM (20% of the 

average yearly average stream flow). The results of reforestation from scenarios 1 and 2 were 

predicted to increase annual stream flow in the dry season by about 3% and to reduce the flow 

in the wet season by about 3% in the mainstream and its tributaries. The soil loss was 

significantly reduced to 11.4 tons/ha, with a 25% increase in reforestation in the catchment 

compared to the baseline. For scenario 3, reforestation was predicted to neither increase nor 

decrease stream flow in wet or dry seasons. However, the effect of reforestation on water 

resources is both complex and uncertain; considering many alternatives and evaluations, the 

past will help in understanding the dynamic changes. However, the effect of reforestation on 

water resources is both complex and uncertain; considering many alternatives and evaluations, 

evaluation, and the past will help in understanding the dynamic changes. This study result will 

be a guideline for decision-making about land use and water resources management in the 

Stung Sangkae River catchment and other river basins in the Tonle Sap Basin of Cambodia. 

Moreover, the increased 25% of reforestation (40% of forest cover in the entire 

catchment) is enough to prevent soil erosion. In contrast, the percentage of reforestation above 

this is not recommended. Furthermore, the result could contribute to the RGC’s policy toward 

the country's Sustainable Development Goals to maintain at least 50% of its land under forest 

cover in 2030. 

In this study, we conclude that forest recovery provided positive hydrological effects 

slightly on streamflow but significantly on soil loss. Forest changes (reforestation or fruit tree 

planting) can play a similar role in all streamflow components as climatic variability in 

magnitude. The different hydrological effects between reforestation and fruit tree planting 

suggest that fruit tree planting may not be effective in soil and water conservation as previously 

expected and should be managed cautiously. We also conclude that a combined research 

approach of the separation technique with the pair-wise method would provide a more robust 

research framework for assessing the hydrological effects of reforestation.  
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CHAPTER 6 

Deeping Public Perception on the Importance of Conservation Strategies 

against Flood/Drought and Soil Loss 

 

6.1. Introduction 

The problems of global, regional, national, and ground soil fertilizers, decline in 

wildlife habitats, fauna and flora, changing of water flow pattern, farming system, poor 

nutrition, and unhealthy people have been caused by land use and land cover (LULC) change 

(Desalegn et al., 2014; Intergovernmental Panel on Climate Change (IPCC), 2014; 

Manandhar et al., 2009; Montalván-Burbano et al., 2021; Shi et al., 2018; Xu et al., 2018). 

Most of developing countries, the majority of citizens’ jobs rely on natural resources and 

agriculture (Desalegn et al., 2014; Mwavu and Witkowski, 2008). For instance, in Cambodia, 

approximately 13.6 million people live in rural areas,, and about 11 million people’s 

livelihoods are based on farming, fisheries, and natural resources (USAID, 2021).  

In a worldwide context, the supply of land resources for producing food, fiber, and 

biofuels is limited (Lambin and Meyfroidt, 2011). Otherwise, land should be taken attention 

to be prepared, developed, and used sustainably (Desalegn et al., 2014; Mwavu and 

Witkowski, 2008; Nut, et al., 2021; Sourn et al., 2021). According to Bonilla-Moheno and 

Aide, (2020); le Polain de Waroux et al., (2016); Kong et al., 2019; Nut et al., 2021), the 

conversion of forest land to farming land happened in Mexico, South America, and 

Cambodia due to the rise of pastures, soybeans, cassava, corn and other fruit trees and paddy 

rice fields. These changes impacted negatively on soil erosion, in particular in Battambang 

province of Cambodia (Nut, et al., 2021, Sourn et al., 2022). For instance, the casava field 

was eroded around 60 to 119 t/ha/262 days in an upland area of Battambang (CARDI, 2016). 

Otherwise, conservation agriculture was recommended practiced as a mitigation measure 

against soil degradation (Pheap et al., 2019). The high crop potential in Cambodia, the land 

area for casava, corn and fruit tree, is increased by the expense of natural resources (Sourn 

et al., 2021). Crop plantation, particularly casava, was also defined as a main crop for 

socioeconomic development and was a key. Consequently, land use change is increasingly 

occurring throughout Cambodia, especially the conversion from forest to cultivated land. 

In addition, for comprehensive and scientific research of natural and social change, 

some tools, such as key informants, in-depth interviews, and focus-group discussions in the 
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study area, should be applied to get information on past, present and expected future land 

use and land cover changes (Gashaw et al., 2017; Sandewall et al., 2001). To deeply 

understand local perceptions of land use change, the approach of qualitative research in 

social science and survey research was used, to answer the question “why change happens” 

and “so what” (Maro, 2011). This methods was also used by Desalegn et al., (2014) and Toh 

et al., (2018) to know the relationship between LULC change and socioeconomic condition 

in Cameroon and Ethiopia.  Using individual semi-structured interviews with local farmers 

to understand the relation between national and local perceptions of environmental change 

in central Northern Namibia found that a combination of local and scientific knowledge 

enables a more beneficial evaluation of land use and land cover change and their impact on 

local land users and managers (Klintenberg et al., 2007). 

  

6.2. Research Methodology 

Structured questionnaire design was used for a household survey (HS), focusing on 

the impacts of LULC changes on soil fertility changes and flooding/drought happening in 

the catchment, particularly relating to agricultural expansion, fertilizer consumption etc., and 

soil erosion. The survey was carried out in August 2021 and adopted a purposive sampling 

method of study site selection such as upstream catchment (Samlout and Rattanak Mondul 

district) and downstream (Sangkae and Ak Phnom district located along Stung Sangkae 

River) to understand the people perception on soil fertility changes and flood/drought 

impacts during the last 18 years from 2002 to 2020. 200 respondents (100 HS at the upstream 

and 100 HS at the downstream of Stung Sangkae River catchment) were chosen randomly. 

The main reason of site selection is due to Battambang, considered as agricultural hub and 

the largest area in the country. The agricultural expansion in Battambang province for 

cassava, corn and other fruit trees in the uplands (Kong et al., 2019), was to booster 

agricultural product in line with the goal of the Cambodian agricultural sector development 

strategy plan (2019–2023) is to increase all type of agricultural production approximately 

10% in annual (MAFF, 2019). The challenge of cultivated area expansion in upland was 

decline of soil fertilizer (Kong et al., 2019). Two stages were organized for this research 

study. The first stage, we have observed the field to receive contextual information on 

agricultural systems in accordance with first draft of structured questionnaire for pretesting 

before survey starting. The second phase, information collected, was used to finalize the 

structured questionnaire in order to gather qualitative and quantitative data. Deep interview, 
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semi-structured face-to-face individual interviews, four focused group discussion (two 

focused group discussion for upstream and downstream) and key informants were carried 

out to get the information relating land use change, information of flooding/drought, 

agricultural practice and other challenges. To overcome the problem of data scarcity and 

evaluate soil erosion in a relatively short period, a unique approach for assessing land 

degradation from the standpoint of farmers was used. It was based on farmer assessments 

and observations of changes in their fields. These changes were expressed as soil and 

productivity loss through visible and comprehensible indicators by the farmers. 

 

  
Photo 1-2. Interviwing commune leader (Left) and key farmer (Right) 

    
Photo 3-4. Interviewing villagers in Rotanak Mondol (Left) and Sangkae District (Right) 

 

Additional assessment of soil fertility changes and flood/drought was assessed through 

farmers’ perceptions through the household survey (HS) of 200 respondents (100 HS at the 

upstream and 100 HS downstream of the Stung Sangkae catchment) in 2021. To overcome 

the problem of data scarcity and evaluate soil erosion in a relatively short period, a unique 

approach for assessing land degradation from the standpoint of farmers was used. It was 

based on farmer assessments and observations of changes in their fields. These changes were 
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expressed as soil and productivity loss through visible and comprehensible indicators by the 

farmers. For the field survey, four districts were selected from each ecological zone (2 

districts at the upstream and 2 districts at the downstream catchment). The villages were 

selected based on their agricultural practices and accessibility. Of the total participants in 

focus group discussion (FGDs), 35% of respondents were female. The FGDs consisted of a 

mixture of closed- and open-ended questions. 

 

6.3. Results and Discussion 

6.3.1. Assessment of Farmers’ Perceptions of Soil Erosion 

Additional assessment of soil loss was assessed through farmers’ perceptions through 

household survey (HS). To overcome the problem of data scarcity and evaluate soil erosion 

in a relatively short period, a unique approach for assessing land degradation from the 

standpoint of farmers was used. It was based on farmer assessments and observations of 

changes in their fields. These changes were expressed as soil and productivity loss through 

visible and comprehensible indicators by the farmers. For the field survey, four districts were 

selected from each ecological zone (2 districts at the upstream catchment and 2 districts at 

the downstream catchment). A total of 200 questionnaires and 3 focus group discussions 

(FGDs) were performed in nine villages from each ecological zone, i.e., high, mid, and low, 

for the assessment of soil erosion indicators during the year 2002–2020. The villages were 

selected based on their agriculture practices and accessibility. Of the total participants in 

FGDs, 35% of respondents were female. The FGDs consisted of a mixture of closed-and 

open-ended questions.  

According to the results of the household survey (HS) of 200 respondents (100 HS at 

upstream and 100 HS downstream of the Stung Sangkae River catchment) in 2021 showed 

that all respondents claimed that during 18 years from 2002 to 2020, soil fertility declined 

significantly. In the catchment, mainly the soil fertility occurred at a fair decline to a strong 

decline which was 44% and 35%, respectively (Figure 6.1), while the rate of soil fertility 

tended to slightly increase from a fair decline to a strong decline of 33% to 36% and 40% to 

43 % at the upstream and downstream catchment, respectively which was 44% and 35%, 

respectively (Figure 6.2). In constract, the rate of very strong decline of soil fertility was 

mainly happened at the upstream catchment rather than at the downstream catchment, which 

was 18% and 11%, respectively. The response from the farmer was agreed with the 

simulation of the SWAT and RUSLE that mostly the soil erosion happened at the upstream 
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catchment. However, based on the focus group discussion, the farmers responded that their 

agricultural yield only slightly declined during the stuy period. This was because the amount 

of chemical fertilizer consumption were used more than before to sustain the yield of the 

products. Similarly, previous researchers proved that the soil loss could reduce agricultural 

productivity. Soil erosion could reduce corn productivity by 12 % to 21 % in Kentucky, 0–

24% in Illinois, 25%–65% in Georgia, and 21% in Michigan, USA (Frye, et al., 1982; Olson 

and Nizeyimana, 1988; Mokma and Sietz, 1992). Furthermore, Jie (2010) reported that if the 

current rate of soil loss in China continues over the next 50 years, food production would 

decrease by 40%.  

 

 

Figure 6.1. Soil fertility 

 

 

Figure 6.2. Perception of soil fertility decline in the catchment from 2002 to 2015 
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6.3.2. Assessment of Farmers’ Perceptions of Dought and Flooding  

The results of the household survey (HS) in 2021 showed that all respondents claimed 

that during 18 years from 2002 to 2020, the catchment mainly experienced low drought at 

the upstream and downstream catchment in 2002 and 2015; however, in 2020, the catchment 

experienced extreme drought rather than low drought in the catchment, particularly in 

lowland catchment (Figure 6.3).  

Figure 6.4 shows that the flooding occurred at a moderate level at the upstream and 

downstream catchment. In 2002, the flooding occurrence at the upstream catchment (42%) 

was higher than at the downstream catchment (33%); however, in 2015-2020, the flooding 

experienced at the downstream catchment, while the rate of flooding also increased from 

moderate to an extreme level, particularly in 2020. Farmers confirmed that they experienced 

drought and flooding while water was released from the dam at the upstream catchment. 

 

Figure 6.3.  Perception of drought in the catchment from 2002 to 2020 

 

 

Figure 6.4.  Perception of flooding in the catchment from 2002 to 2020 
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6.4. Discussion 

This study is concerned with the impacts of LULC change on hydrological responses 

in Stung Sangkae catchment. We are concerned that changes in land use will result mainly 

in changes to stream flow, evapotranspiration, water yield, and soil erosion. This study used 

the LULC baseline scenario in 2002 compared with the LULC scenario in 2015 for the 

stream flow, evapotranspiration, water yield, and soil erosion simulation period from 2000 

to 2018, while the field survey was done to confirm with simulation results, particularly 

drought, flooding, and soil fertility decline due to the soil erosion in the catchment based on 

the perception of the farmers.  

In our study, the SWAT model proved satisfactory for modeling river flows in the 

Stung Sangkae catchment. Results obtained from the SWAT model were improved when 

calibration was completed by adjusting the parameters that affect the flow rate. According 

to Moriasi et al. (2007), calibrated and validated results were adequately acceptable for the 

Stung Sangkae catchment following the performance evaluation criteria. Similarly, the study 

of Oeurng et al. (2019) reported that calibration and validation performance for monthly 

time-step simulations at Stung Sangkae River in the Tonle Sap Lake basin obtained R2 = 

0.55, NSE = 0.32, and PBIAS = −30% for calibration and R2 = 0.70, NSE = 0.19, and PBIAS 

= −62% for validation. In contrast, according to the performance evaluation criteria, our 

calibrated and validated results for NSE > 0.40 and PBIAS < ±15% were performed well for 

Stung Sangkae river in Tonle Sap Lake basin. In addition, all R2 values for the monthly 

calibration and validation were above 0.50, suggesting good model performance (Moriasi et 

al., 2007). The model's overall performance was satisfactory as presented in Figures 3.3 and 

3.5. 

The result of soil loss simulated from the SWAT model significantly caused my LULC 

changes even though the streamflow was not significantly influenced. The soil loss led to a 

decline in soil fertility, which strongly affected farmers' agricultural practices at the upstream 

and downstream catchment. Based on the HS, the farmer’s responses agreed with the SWAT 

model as the soil fertility declined at the upstream and downstream catchment. In contrast, 

the RUSLE model could provide a reasonable result of soil erosion which occurred mainly 

at the upstream catchment, like the SWAT model, but failed to predict the erosion at the 

downstream catchment. However, the farmers responded that their crop yield was not much 

reduced as they applied more chemical fertilizer on their fields due to the soil degradation. 
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Moreover, the farmers experienced drought and flooding in the catchment, while some 

years they experienced at the same time drought and flooding. Besides these, the policy of 

RGC is to increase the forest cover through reforestation activities in the country up to 50% 

of the SDG on the UN agenda. Also, it tries to intensify agricultural production by promoting 

some farming techniques such as conservation agriculture and agroforestry to prevent soil 

erosion and reduce runoff from the farming fields etc. Different studies in different countries 

have also been conducted to evaluate the impacts of LULC changes on stream flow; a 

modeling study of Anger watershed, in Ethiopia (Brook et al., 2011) introduced that the 

surface runoff increased, and the base flow decreased due to the expansion of agricultural 

land and declined of forest land. In the study of Chemoga watershed, in Blue Nile basin, 

(Abebe, 2005) also reported that a large volume of surface runoff occurs during storm events 

since the area under forest cover decreased. 

Nevertheless, without including climate change factors, our study provided new sights 

on the impacts of land use change on stream flow evapotranspiration, water yield, and soil 

erosion. Similar to several studies, Lin et al. 2007 and Wijesekara et al. 2012 have integrated 

the hydrologic models with only land use change models to study the impact of foreseeable 

changes. In addition, the changes observed in the Stung Sangkae catchment hydrology 

(stream flow) due to land use change in this study align with hydrological studies in different 

countries from Anand et al., 2018; Remondi et al., 2016; Wagner et al., 2017. Moreover, this 

study can assess the potential impacts of land use change on hydrological responses (stream 

flow, evapotranspiration, water yield, and soil erosion, etc.) in the Stung Sangkae catchment; 

however, water quality is also accounted for the other priority. Based on this study scenario, 

exploring the associations of hydrologic changes in Stung Sangkae catchment will be helpful 

for decision-makers and policymakers for the conservation of natural water resources and 

ecosystems. 
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CHAPTER 7 

Conclusion and Recommendations 

 

7.1 General Conclusion 

This research used different land use and land cover change (LULC) to evaluate their 

impacts on the hydrological responses, such as streamflow, water balance, and soil erosion 

in Stung Sangkae River catchment. During the investigated periods from 2002 to 2015, the 

upland fields increased by 20.8% from 4.4% to 25.2%. The forest land decreased 

significantly from 43% to 29.6% due to a massive shift in deciduous and mixed forest 

converted to agricultural land, paddy rice fields, and other land use types. 

For both reference land uses in 2002 LULC and 2015 LULC, the sensitive stream flow 

parameters were the same, although the sensitivity rank of the exact parameters varies. 

Hence, these calibrated parameters can be used for further future hydrological and 

environmental studies in the Stung Sangkae River catchment without doing a sensitivity 

analysis. In general, the calibrated model reasonably explained the variability in hydrological 

responses of streamflow affected by different LULC maps in the sub-catchment and 

catchment scales under the evaluation of LULC 2002 and 2015. The statistical agreement 

was R2=0.58, NSE=0.55, PBIAS=5 (including the dam construction period) and R2=0.64, 

NSE=0.62, and PBIAS=15 (excluding the dam construction period).  

As LULCs changed from 2002 to 2015, individual LULCs' contribution to catchment 

WY changed too, but the change process was complex because the WY is an integrated 

result of LULCs, soil, topography, and climate. For the contribution of each LULC to the 

total WY of the catchment, the forested area, shrubland, and grassland were the main 

contributors, with up to about 40%, 12%, and 13%, respectively. The land use that generated 

the largest water yield was presented to be agricultural activities and urban area, which was 

higher than any other land use type, followed by forested area, shrubland, and grassland. 

Furthermore, accompanying the LULC changes in the Stung Sangkae catchment, an increase 

in PET, ET, and WY indicated that soil and water conservation practices increased stream 

flow. In contrast, expanding the agricultural land, rice, and urban area increased the ET and 

WY. 
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Even though the LULC in 2002 and 2015 had significantly changed from forest land 

to agricultural land and other types, the SWAT streamflow simulation was not very different, 

but it significantly impacted soil erosion in the Stung Sangkae catchment. 

In terms of soil erosion analysis with SWAT and RUSLE models, the mean annual 

soil loss of the Stung Sangkae catchment was approximately 12 t/ha/yr and 21.8 t/ha/yr for 

the LULC 2002 and LULC 2015 based on SWAT model simulation which agreed with the 

experimental corn field of CARDEC in 2019. For the soil erosion analysis with the RUSLE 

model, the average soil loss from the catchment was 3.1 in 2002 and 7.6 t/ha/y in 2015, while 

the highest erosion rates of 14.3 to 62.9 t/ha/y were found in parts of the upland of the Stung 

Sangkae catchment, mainly due to steep slopes, high rate of erosion and degradation of the 

vegetation. Considerable changes in soil loss rate were observed in agricultural land. The 

application of the RUSLE equation shows that 87% of the catchment area is exposed to a 

low to moderate erosion risk (<10 t/ha/y), and 4.1% basin is in severe, moderate risk, while 

the application of the SWAT model shows that 74.5 % of the surface area of the Stung 

Sangkae catchment is exposed to a low to moderate risk of erosion (<10 t/h/y) and 17.4% 

basin is at severe risk. The most affected areas are in the west of the catchment, where the 

upland agriculture was expanded. Generally, both models have shown that the risk of erosion 

in the Stung Sangkae catchment is considered as low to moderate erosion risk. However, if 

compared with the results of the questionnaire survey, the SWAT model is better than 

RUSLE for predicting soil erosion as it could capture the soil erosion at the downstream 

catchment, while the RUSLE could not do that. This is because the RUSLE model is based 

on kinetic energy in the delivery of potential erosion quantities in a terrestrial phase, while 

the SWAT model works in two phases, the terrestrial first which consists of quantifying the 

amounts of the sediment to be delivered at the level of each sub-basin discretized in several 

hydrological units, and the second fluvial phase, which makes it possible to evaluate the 

quantities of the transported sediments. In our case, the amount of soil erosion from the 

SWAT model is increased because of the porous nature of the Stung Sangkae catchment soil, 

which consequently can raise or minimize the amount of erosion delivered by each sub-basin. 

Moreover, this can happen due to the inappropriate estimation of the C and P factors in the 

catchment while using the RUSLE model, as they effectively prevented soil loss. 

Countermeasures of reforestation or agroforestry of 25% (40% forest of the total area) 

had less impact on streamflow. Still, it significantly prevented soil erosion in the catchment, 

while the increased reforestation of more than 25% is not recommended. 
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It could also be concluded that the approach used in this research simply evaluates the 

contributions of individual LULC classes to the hydrological responses, providing 

quantitative information for decision-makers to make better options for land and water 

resource planning and management. This approach also provides a solid example of the 

potential of hydrologic modeling using national LULC maps in understanding the impacts 

of hydrological change on runoff, water yield, soil erosion etc. in the Stung Sangkae River 

catchment of Cambodia. It can be widely applied to a variety of catchments, where time-

sequenced digital land cover data is available, and to predict hydrological consequences to 

LULC changes. Moreover, the applicability of the SWAT model in simulating the soil 

erosion and flow dynamics of the Stung Sangkae River catchment was validated based on 

the satisfactory values of the statistical measures of the model efficiency. Therefore, the 

model simulation results provide confidence for further application of the model to assess 

hydrological response analysis, as the spatial and temporal variability of the catchment 

features within the Stung Sangkae River basin will show minimal bias. However, the 

changes in LULC have impacted the environmental sustainability, especially the streamflow 

that caused flooding at the downstream watershed due to declined forest cover at the 

watershed, sediment yield, soil erosion, and other environmental issues. 

  

7.2 Recommendations  

Based on the study's outcome, it recommends that some further things and studies 

should be considered. 

- As the LULC could more or less impact hydrological components (stream flow, 

groundwater, water yield, evapotranspiration etc.) in the Stung Sangkae River 

catchment due to the population growth and required agricultural land for crop 

production, which are the main factors leading to the decrease of forest land, a 

proper integrated forest resource management to balance forest conversion to 

agriculture and built-up areas, should be considerably taken into consideration by 

the policy-marker as well as urban planning designer.  

- The other thing which is highly recommended is that the weather stations should 

be improved both in quality and quantity in order to improve the performance of 

the model. Hence, it is highly recommended to establish good meteorological 

stations. 



  

181 

- Hydrological modeling integrating future climate change and LULC changes 

scenarios can effectively plan future water resource management strategies. Thus, 

the next research should focus on integrating these scenarios to understand how 

much changing impervious land use contributes more clearly to water quantity.  

- The study developed R-factor from six meteorological stations, which may 

introduce uncertainties in the estimated soil loss. Therefore, more stations of 

meteorology should be further used to estimate soil erosion based on the RUSLE 

model, while the R-factor equation for the Cambodia context should be formulated 

for better results. 

- The estimation of the K-factor should be made based on national or local soil type 

to compare with the soil type extracted from the Soil Grids database of ISRIC-

World Soil Information. 

- The estimation of the C and P factors in the catchment should be carefully selected 

for use with the RUSLE model as they are susceptible to estimating soil loss.  

- Integrated protection measures at the farm level and target areas of high risk of 

erosion, mainly the degraded lands along the steep slopes, to limit the conversion 

of forest areas for agriculture and minimize the rate of erosion where the land is 

bare or with low vegetation cover should be taken into consideration. Some 

recommended measures to prevent soil erosion include on-farm conservation 

agriculture practices (CAP), water conservation and management, agro-forestry 

practices, vegetation cover restoration, and terracing.  

- This study result will be a guideline for decision-making about land use and water 

resources management in the Stung Sangkae Catchment and other river catchments 

of the Tonle Sap tributaries of Cambodia. 
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APPEXDIX II 

Table A.1. Rating curve developed to estimate stream flows for the monitored water levels at the outlets of the 11 Tonle Sap sub-catchments 

(Kummu, et al., 2014) 

Sub-catchments Rating curve Observed flow 

ST. Chinit 𝒬 = 15.49 − 36.8088 × HKgThom + 36.3032 × HKgThom
2 − 8.5957 × HKgTmar

3 + 0.7869 × HKgTmar
4  2000-2019 

ST. Sen 
𝒬 = 0.000013 × (HKgThom − 1.21)

6.8178
× F0.2; 

where, F =  HKgThom − HKgLuong 
2000-2019 

ST. Staung 
𝒬 = 0.8554 × HKgChen

2.7794 × F0.5; 

where, F =  HKgChen − HKgLuong + 7 
2000-2019 

ST. Chikreng 
𝒬 = 0.1017 × HKgKdey

3.3034 × F0.5; 

where, F =  HKgChen − HKgKdey + 7 
2000-2018 

ST. Siem Reap 𝒬 = 4.1059 × (HUntacBridge − 0.0936)
2
 2000-2016 

ST. Sreng 
𝒬 = 0.01299 × HKralanh

4.3665 × F0.5; 

where, F =  HKralanh − HBacPrea + 4 
2000-2017 

ST. Mongkol Borey 

𝒬 = y × (F + 6.09)0.69; 

y =  −0.5665 + 2.212 × HMongkolBorey − 0.8243 × HMongkolBorey
2 − 0.1796 × HMongkolBorey

3  

F =  HMongkolBorey − HBacPrea + 6 

2000-2017 

ST. Sangke 

𝒬 = y × (F + 0.3)0.18; 

y =  −28.2541 + 33.8995 × HBattambang − 9.5551 × HBattambang
2 − 0.8092 × HBattambang

3  

F =  HMongkolBorey − HBacPrea 

2000-2018 

ST. Dauntri 𝒬 = 12.4 × (HMaungRussey − 1.2439)
2
 2000-2008 

ST. Pursat 𝒬 = 25.5 × (HBacTrakuon − 0.0856)
2 2000-2016 

ST. Baribo 𝒬 = 37.1593 × HBaribo
1.6195  2000-2014 
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APPEXDIX III 

Household Questionnaire Survey 

 

1. Interniewee’s Information 

Interviewee’s 

name 
 Sex  Age  

Village name  Commune  District  

GPS ID  Coordinate x  Coordinate y  

Household ID      

Date of 

interview 
 Starting time  Ending time  

Do she/he Consent to provide information for this survey? Yes   No  

 

 

Section 1: Social Economic Profile 

(For interviewer: please ask the questions below to head of the family for both husband and 

wife.) 

No 1. Ages  2. Gender 

(1=male, 

2=female) 

3. Marital 

Status 

4. Level of 

Education 

5. Ethnic 6. 

Religious  

1       

 

Marital Status Level of Education Ethnic Religious  

1. Single   

2.  Married 

3. Divorced     

4. Widow/widower 

1. Illiterate   

2. Primary school 

3. Secondary Scholl 

4. High school 

5. Vocational 

trainings 

6. College/University 

7. Informal education 

8. Others  

1. Khmer  

2. Kuoy 

3. Bunong 

4. Krol  

5. Lao 

6. Kinh 

7. Others (Please 

specify) 

1. Buddhist 

2. Catholic 

3. Protestant  

4. Islam 

5. Ancestors worship  

6. No religious   

 

7. How many people in your family based on age classification below?  

7.1 Children under 1 year old 

7.2 Children from 1 to 5 years old 
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7.3 Children age from 5 to 17years old 

7.4 Adults age from 18 to 59 years old 

7.5 Elder age above 59 years old  

8. Can you read any announcement or information?   1= No      2 = Yes 

9. What is the source of lighting in the house?  

 1 = Electricity   2 = Biogas   3 = Kerosene 

 4 = Battery   5 = Other _____________ 

10. What is the main fuel used for cooking in the house?  

 1 = Electricity   2 = Gas   3 = Firewood 

 4 = Kerosene   5 = Charcoal  6 = Other 

11. How many of the following devices does your household have? 

Households’ asset Number Households’ asset  Number 

11.1 Sewing machine  11.8 Mobile Phone  

11.2 Ox cart  11.9 Motorcycle  

11.3 Tractor   11.10 Bicycle/electric 

bicycle 

 

11.4 Television  11.11 Car  

11.5 DVD/VCD/VHS 

player 

 11.12 Boat with engine  

11.6 Rice miller   11.13 Boat without engine  

11.7 Sawing machine  11.14 others  

 

12. How many in your household, including yourself, can earn income?  

 

13. What is the main occupation for sustaining your family livelihood? (Please tick only 

one.) 

1.Farming/gardening 5. Fishing 9. Aquaculture  

2. Handicraft 6. Collecting TFP/NTFP 10. Middleman 

3. Rented labors 7. Own business 11. Service providers 

4. Government officer 8. NGO/Company staff 12. Others, 

specify……………. 

 

14. What are the secondary occupations for sustaining your family livelihood? (Can be 

ticked more than one.) 

1.Farming/gardening 5. Fishing 9. Aquaculture  

2. Handicraft 6. Collecting TFP/NTFP 10. Middleman 

3. Rented labors 7. Own business 11. Service providers 

4. Government officer 8. NGO/Company staff 12. Others, 

specify……………. 

 

15. Please indicate your average monthly household income (Riels).  

1 Less than R200,000 7 From R1,200,000 to R1,400,000 
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2 From R200,000 to R400,000 8 From R1,400,000 to R1,600,000 

3 From R400,000 to R600,000 9 From R1,400,000 to R1,600,000 

4 From R600,000 to R800,000 10 From R1,600,000 to R2,000,000 

5 From R800,000 to R1,000,000 11 From R2,000,000 to R2,400,000 

6 From R1,000,000 to R1,200,000 12 More than R 2,400,000 

 

Section 2: Agricultural Practices 

16. Please indicate the amount of land (in hectares) that your household currently own and 

have rented in/out. 

Land category Land 

ownership 

(ha) 

Total land 

rented out (ha) 

Total land 

rented in (ha) 

Total 

areas (ha) 

16. Agricultural land     

16.1 Paddy land     

16.2 Chamkar (crop land)      

16.3 Pasture (natural or 

planted) 

    

16. Total land owned      

 

Section 3: Soil Erosion Impacts on Agricultural Potential and Performance 

17. Distance from your house to farmland (…………km) 

18. What type of road in your village? 

Year 1. Earth road 2. Laterite road 3. Concrete road 4. BST road 

2002     

2015     

2020     

19. How big is your farm size? 

Year 1. < 1 ha 2. 1 ha < & < 3 ha 3. 3 ha< & < 5 ha 4. 5 ha < & < 10 ha 5.  > 10 ha 

2002      

2015      

2020      

20. Fertilizer Consumption:  

 20.1. Do you apply chemical fertilizer on your fields? 

 1. No,  2. Yes (How many sack of chemical fertilizer is applied per hectares?) 

Year 1. < 1 

sack 

2. 1 < & < 3 sack 3. 3 < & < 5 

sack 

4.  > 5 sack Cost of fertilizer per sack 

2002      

2015      

2020      

Note: One sack = 50 kg 
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 20.2. Do you apply compost fertilizer or cow/chicken manures on your fields? 

 1. No,  2. Yes (How many sack of chemical fertilizer is applied per hectares?) 

Year 1. < 1 ton 2. 1 < & < 3 tons 3. 3 < & < 5 

tons 

4.  > 5 tons Cost of compost per ton 

2002      

2015      

2020      

 

Section 4: Constraints to Agricultural Production 

21. Does the soil fertilizer decline in the last 20 years?  

 a. No decline,  b. Little,  c. Fair,  d. Strong,  e. Very strong  

22. Do you lack of credit for agricultural production? 

 a. No,  b. Little,  c. Fair,  d. Much,  e. Very much  

23. Do you lack of labor for agricultural production? 

 a. No,  b. Little,  c. Fair,  d. Much,  e. Very much  

24. Do you have any problem with flooding? 

 a. No,  b. Little,  c. Fair,  d. Strong,  e. Very strong  

25. Do you have any problem with drought? 

 a. No,  b. Little,  c. Fair,  d. Strong,  e. Very strong  

26. How much is chemical peticide applied in the field? 

Year 1. No 2. little 3. Fair 4. Very 5.  Very 

Strong 

2002      

2015      

2020      

27. How much is chemical fertilizer applied in the field?  

Year 1. No 2. little 3. Fair 4. Very 5.  Very 

Strong 

2002      

2015      

2020      

 

Section 5: Impacts of Land Use Change on Hydrological characteristics in 2002-2020  

28. Rainfall pattern: Have you noticed about the rainfall pattern changed in your areas 

during these years: 2002, 2015 and 2020?  1. No,  2. Yes (Please answer 

below.) 

Year 1. Low rainfall  2. Moderate rainfall 3. Extreme rainfall 

2002    

2015    

2020    
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29. Flooding occurrences: Is there any flooding occurrence during these year: 2002, 

2015 and 2020?  1. No,  2. Yes (Please answer below.) 

Year 1. Low flooding  2. Moderate flooding 3. Extreme flooding 

2002    

2015    

2020    

30. Erosion occurrences: Is there any erosion occurrence during these year: 2002, 2015 

and 2020?  1. No,  2. Yes (Please answer below.) 

Year 1. Low erosion  2. Moderate erosion 3. Extreme erosion 

2002    

2015    

2020    

31. Drought occurrences: Is there any drought occurrence during these year: 2002, 

2015 and 2020?  1. No,  2. Yes (Please answer below.) 

Year 1. Low drought 2. Moderate drought 3. Extreme drought 

2002    

2015    

2020    

32. Do you use water from the Stung Sangkae during these year: 2002, 2015 and 2020?  

 1. No,  2. Yes (Please answer below.) 

Year 1. Low use 2. Normal use 3. Much use 

2002    

2015    

2020    

33. Do you irrigate your crop fields during these year: 2002, 2015 and 2020?  

 1. No,  2. Yes (Please answer below.) 

Year 1. Less irrigate 2. Normal irrigate 3. Much irrigate 

2002    

2015    

2020    

34. Do you change the crop type (different crop; plant new crop) between 2002 and 

2020?  

 1. No 

(Reason: ............................................................................................................) 

 2. Yes 

(Reason: ..........................................................................................................) 
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35. Do you change the crop variety (same crop; but different varieties) between 2002 

and 2020? 

 1. No 

(Reason: ............................................................................................................) 

 2. Yes 

(Reason: ..........................................................................................................) 

36. Do you change to drought resistant crop between 2002 and 2020? 

 1. No 

(Reason: ............................................................................................................) 

 2. Yes 

(Reason: ..........................................................................................................) 

37. Do you change in sowing/planting dates between 2002 and 2020?  

 1. No 

(Reason: ............................................................................................................) 

 2. Yes 

(Reason: ..........................................................................................................) 

 


