
Doctoral Dissertation 
 

Development of Methods for Crop Growth Assessment  

Using UAV Aerial Images  

 

 

Ke Zhang 

 

 

Supervisor: Professor Dr. Sawahiko Shimada 

        Advisor: Professor Dr. Hiromu Okazawa 

                              Associate Prof. Dr. Ayako Sekiyama 

                     Professor Dr. Kiichiro Hayashi 

 

20 March 2023 

 



 

I 
 

Summary 

 

Chapter 1 Backgrounds and Objectives  
    Precision agriculture has been developed as a technology for more labor-saving, efficient, 
and precise farm management that makes full use of precise farm management plans based 
on sensing information and automatic control of agricultural machinery based on digital 
mapping development is emphasized. Spatial information about crop growth and soil 
conditions for each field or within a field is particularly important for promoting precision 
agriculture. Therefore, remote sensing by satellites and Unmanned aerial vehicles (UAVs) 
has been used as a method for spatially measuring crop growth and actual conditions of soil 
which plays a large role in precision agriculture. In the case of  UAV, it is possible to achieve 
ultra-high resolution of several millimeters to several centimeters by appropriately selecting 
flight altitude and sensor specifications. Advantages to use for monitoring crop growth are 
UAVs filling a niche in observation scale, resolution and height between manned aerial 
platform and ground. Several authors have shown how to combine UAVs with lightweight 
sensors for crop monitoring. However, with the extremely high spatial resolution of UAV 
imagery, the difference of plant shapes between different crops gives significant influence of 
the observation result when monitoring plant height using UAV. Few studies have examined 
crops with different stomatal morphologies at the same time, in the same region, and under 
the same flight conditions. In particular, there have been no studies comparing 
monocotyledonous and dicotyledonous plants, which differ greatly in stomatal morphology 
and cultivation methods, under the same conditions. Moreover, for agricultural surveys, 
setting GCPs inside the crops is destructive for the growing plants and will cause disruptions 
to field management. It is necessary to acknowledge that in many surveying sites, only the 
outer edges of the subject area are available for GCP placement. Based on this reality, the 
current study aims to create a standard to evaluate the quality of GCP setting to provide a 
guideline for researchers or surveyors of UAV photogrammetry to decide the most optimal 
number and spatial configuration of GCPs without intruding into the subject area. To actually 
practice UAV remote sensing to agriculture, the problems in real sites of farmland need to 
be further discussed. 
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Chapter 2 Optimization of Ground Control Points Distribution for Unmanned Aerial 
Vehicle Photogrammetry in Farming Land  
    Ground control point (GCP) is an important calibration factor when correcting position 
information during unmanned aerial vehicle (UAV) remote sensing. Studies of the optimal 
number and distribution shape of GCPs have been conducted worldwide in recent years. 
However, when conducting surveys at houses, construction sites, farming lands, forests, and 
some other locations, it is both difficult and destructive to install GCP inside the subject area. 
In many cases, it is only possible to install GCP at the outer edge around the area. Therefore, 
this study aims to suggest the optimal GCP distribution pattern, which can provide the highest 
accuracy, when only the outer edge of a particular area is available. In this research, 88 GCP 
patterns have been validated and compared at an 18 ha farm. Results show that the patterns 
with GCPs distributed evenly around the field provided the best calibration (RMSE = 0.15 
m). If this kind of pattern is not achievable because of obstructions, patterns with GCPs 
distributed evenly around half of the field or forming an evenly distributed triangle can 
provide moderate accuracy (RMSE = 0.18 m and 0.43 m, respectively). Patterns with GCPs 
forming a straight line yielded the worst accuracy (RMSE = 2.10 m). This shows that GCP 
distributions of a two-dimensional shape, even if the surrounding area is small, are better 
calibrated than a long, straight line. These results strongly suggest that appropriate GCP 
distribution patterns in the study areas will provide satisfactory accuracy for constructing 
integrated monitoring systems of diverse resources.  
 
Chapter 3 Monitoring of Crop Plant Height Based on DSM Data Obtained by Small 
UAV Considering Difference of Plant Shapes  
    UAV is expected to be used in agricultural fields because it is cheaper than satellite and 
aerial photography and can acquire high-resolution aerial images at any time. Researches on 
crop height monitoring using digital surface models (DSM) based on UAV aerial images 
have been conducted for various crops around the world. However, there is no research that 
examines the difference in estimation accuracy for multiple crops with large differences in 
foliage morphology. While UAVs provide high-resolution aerial images, we cannot ignore 
the fact that structural differences in the details of the object to be photographed (such as the 
foliage morphology of crops in the case of crops) greatly affect the results of UAV 
photogrammetry. Therefore, in this study, we monitored the crop height of oat and reed 
canary grass, which are monocotyledonous plants, and potato and perilla, which are 
dicotyledonous plants, using DSM data by UAV, and compared the estimation accuracy. By 
doing so, we investigated the effect of foliage morphology on the estimation accuracy. As a 
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result, the highest estimation accuracy (R2= 0.97, RMSE = 5 cm) was obtained for perilla 
with ovate leaf blades and thick foliage. As a result of comparing the regression equations of 
the estimated crop height and the measured values over the entire period, the estimated values 
always kept a constant difference from the measured values for the monocotyledonous plants, 
while the estimated values for the dicotyledonous plants It was lower than the measured value, 
approached the measured value as the crop grew, and eventually exceeded the measured 
value (when the crop height was 1 m or more). From these results, it was found that when 
estimating crop height using DSM data, it was necessary to correct the DSM value using a 
regression equation appropriate for the crop. In addition, this study provided the formulas for 
estimating the crop heights of the four common crops during the entire growing season, 
thereby accumulating basic data for crop growth monitoring using DSM in the future. 
 
 
Chapter 4 Comparison of DSM and 3D Point Clouds by UAV Imagery on Estimating 
Plant Height and Biomass Volume  
    Plant biomass is considered as an important parameter for crop management and yield 
estimation, especially for grassland. Aerial photogrammetric techniques have been used for 
vegetation data gathering of the areas of dense vegetation fields with high research interest. 
Recent advances in computer vision include structure from motion and multi-view stereopsis 
(SfM-MVS) techniques, which can derive 3D data such as digital surface models (DSMs) 
and orthomosaic from overlapping photography taken from multiple angles. The difference 
between the DSMs of a planted field and the digital terrain model (DTM) has been referred 
to crop surface model (CSM). Ever since SfM-MVS has been adopted to derive plant height 
(PH) and above-ground biomass using CSMs in 2013, this method has become the most 
explored and verified approach to simulate the structure of crops all over the world. However, 
the complexity of crop structure is thought to be not well represented in DSMs because the 
DSMs have only one Z value at each 2D pixel. Besides, lacking a DTM representing the bare 
ground is another problem when adopting the CSM method. On the other hand, the 3D point 
cloud where DSMs are derived from UAV may provide the structure information in a faster 
and more detailed way. In this study, we compared DSM data and 3D point cloud data for 
estimating the crop height of reed canary grass and estimating the above-ground volume of 
the crop in an experimental field at Obihiro University of Agriculture and Veterinary 
Medicine. As a result, the 3D point cloud data obtained higher accuracy than the point cloud 
data in estimating the crop height (RMSE = 4 cm, 3 cm, intercept = 8.8, -0.16, respectively). 
It was found that the correction of the regression equation was unnecessary when estimating 
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the crop height. Therefore, it was found that 3D point cloud data is suitable when accurate 
crop height and lodging information is required. On the other hand, there was no significant 
difference between the DSM data and the 3D point cloud data for the above-ground volume 
estimates during the entire growth period. From this, it was found that the two types of data 
have the same performance in estimating the above-ground volume, and that the DSM data 
is appropriate in terms of practicality. It is believed that this research contributed to the 
practical use of UAV aerial photography in agriculture by proposing types of UAV aerial 
photography data for different purposes. 
 
Chapter 5 Relationship between NDVI and Canopy Cover Sensed by Small UAV 
under Different Ground Resolution  
    Canopy Cover (CC) is a significant indicator to describe the development of crops, and is 
used to estimate the evapotranspiration volume of crop leaves within crop simulation models. 
During the last three decades, monitoring of CC for crops using Normalized Difference 
Vegetation Index (NDVI) obtained from satellite sensor such as Landsat and Sentinel-2, has 
been studied world-widely. However, a few studies have estimated CC of crops using NDVI 
obtained from UAVs, and there is no research showing that the NDVI based on UAV imagery 
has the same linear regression relationship with CC as satellite imagery. One of the crucial 
advantages of UAV imagery is that it provides high resolution of less than 0.10m, while the 
resolution of satellite imagery is usually larger than 10m. Now that the UAV has become a 
popular method in agriculture science, it is necessary to prove the interchangeability of UAV 
and satellite imagery of monitoring CC.  
    In this study, RGB and multispectral images of a peanuts field located in the experimental 
field in Obihiro University of Agriculture and Veterinary Medicine were taken by small 
UAVs and multispectral camera. Orthomosaic and reflectance map of the farming field were 
constructed using the UAV imagery, and then were used to obtain CC and NDVI values with 
a GIS software. CC was calculated as the ratio of the green canopy area, which was extracted 
from the orthomosaic using a supervised classification tool within GIS. CC was compared 
with NDVI values under various resolutions of 0.50 m, 1.0 m, 2.5 m, 5.0 m, and 10 m. 
    The NDVI showed highly correlated linear relationship (y = ax + b) with CC under each 
ground resolution from 0.10 m to 10 m (R2 of 0.88**, 0.92**, 0.94**, 0.89**, 0.93**, 
respectively). The shapes of the regression equations of NDVI and CC closely resembled 
each other, with the slopes (a) of 1.16, 1.11, 1.09, 1.08 and 1.06, and the intercepts (b) of 
0.247, 0.249, 0.250, 0.250 and 0.250, respectively. From the result of ANCOVA, the 
resolution of remote sensing imagery has not significant impact on the relationship between 
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NDVI and CC. Although with the increasing ground resolution, more irrelevant factors, such 
as soil and mulching seat got included within one pixel of the images, the regression 
equations stayed the same. This study demonstrated the possibility of using UAV 
multispectral imagery for CC monitoring with the same regression equations as satellite 
multispectral imagery.  On the other hand, in each regression equation, the intercept was 0.25 
even though the regression coefficient was close to 1.0. The reason for this is thought to be 
the low NDVI value of the plastic mulch sheets applied in the fields. From this, it was found 
that features other than crops and soil mixed in the same pixel had an adverse effect on 
obtaining an accurate relationship between NDVI and CC. In the future research, it is 
important to use the high-resolution characteristics of UAV aerial images and determine the 
features in the farmland in order to accurately measure the growth evaluation index of crops. 
 
Chapter 6 Assessment of Three Automated Identification Methods for Ground 
Objects Based on UAV Imagery  
    Identification and monitoring of diverse resources or wastes on ground is important for 
integrated resource management. Remote sensing application is of great significance for 
identification of ground objects due to its rapid and accurate assessment. Among remote 
sensing platforms, the unmanned aerial vehicle (UAV) with its high resolution and facility is 
the optimal tool to monitor ground objects accurately and efficiently. However, few studies 
have compared different classification methods using UAV imagery. This study compared 
three classification methods: A. NDVI threshold, B. RGB image-based machine learning, 
and C. object-based image analysis (OBIA). Method A was the least time-consuming and 
could identify vegetation and soil with high accuracy (user’s accuracy > 0.80), but had poor 
performance at classifying dead vegetation, plastic, and metal (user’s accuracy < 0.50). Both 
Methods B and C were time- and labor-consuming, but had very high accuracy in separating 

vegetation, soil, plastic, and metal (user’s accuracy ≧ 0.70 for all classes). Furthermore, 

Method B showed a good performance at identifying objects with bright colors, such as the 
plastic blue-sheets, whereas Method C showed high ability at separating objects with similar 
visual appearance, such as soil and dead vegetation. These results help users to choose an 
appropriate method that suits their target, so that different wastes or multiple resources can 
be monitored at the same time by combining different methods, which contributes to an 
improved integrated resource management system.  
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Chapter 7 Conclusion and Recommendations 

    The novelty of this thesis are: Developed an original index to evaluate GCP setting by both 
number and spatial distribution; Unraveled the reason for the deviation between DSM-
derived plant height and reference value, and suggested method of moderation; Discussed 
the difference in restricting crop structure by different data types, and suggested the proper 
use for each method; Verified the linear correlation between NDVI and CC sensed by UAV 
under different resolutions and found out the error factor when monitoring vegetation index 
by UAV; and Applied the land-use classification methods on ground objects identification at 
farmland, and suggested the proper methods for identifying objects made from different 
materials. By these results, we were able to answer the questions at the introduction. Finally, 
the results suggested by this research could be summarized as the integrated management 
flow chart. RGB imagery obtained by UAV could be used to construct DSM data and point 
cloud data, which are useful to monitor the crop status during the early growth stage by 
calculating plant height or canopy volume. On the other hand, during the later growth stage, 
when the plant height stops to increase, the canopy cover and NDVI calculated by 
multispectral imagery obtained by UAV is more qualified for crop growth monitoring. 
Moreover, ground object identification discussed by this research could not only increase the 
accuracy when evaluating the crop status using canopy cover or NDVI, but also contribute 
to a better farmland management strategy and environment. This integrate management 
method for crop growth assessment and farmland management based on multiple kind of 
data types and analysis methods is thought to be the novelty of this research.  
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Summary in Japanese 
 

第⼀章 研究背景と⽬的 
 精密農業は，センシング情報に基づく営農計画により省⼒化・効率化・緻密な
営農を⾏う技術であり，デジタルマッピング開発による農業機械の⾃動制御が重
視されている．各圃場または圃場内の作物の成⻑と⼟壌条件に関する空間情報は，
精密農業を促進するために特に重要である．そこで，精密農業において⼤きな役
割を果たしている作物の⽣育状況や⼟壌の実態を空間的に計測する⽅法として，
⼈⼯衛星や UAV によるリモートセンシングが利⽤されてきた． UAV 空撮画像を
⽤いて農作物の⽣育状態を把握する研究や収穫量を予測する研究は世界中で⾏わ
れてきた．また，作物⾼，植被率および植⽣指数は作物の追肥時期・施肥量を決
定する上で重要な指標であり，正確な⽣育状況の把握は農家の収⼊向上に繋げら
れる．しかし今までの研究では，伝統リモートセンシングの解析⼿法を UAV 画像
に適⽤し，モニタリングの精度を衛星画像と⽐較検討するものが多く，UAV 画像
の特徴である⾼解像度による独特な課題（作物の茎葉形態，圃場内の地物等は可
視化され，リモートセンシングの結果に影響を及ぼす）を検討しなかった．また，
⾼さ，植被率，または植⽣指数という特定な指標による⽣育評価が多く，作物の
⽣育段階に応じて最適な評価⽅法を提案した研究はまだない．さらに，それぞれ
のパラメータをモニタリングする解析⼿法は雑多であり，各解析⼿法の推定精度
や特性を⽐較検討し，異なる調査⽬的に相応した解析⼿法を確定する研究はまだ
⾒られていない．以上を踏まえ，本研究はまず最適な UAV 空撮の前期準備として，
農業地域における最適な GCP の設置⽅法を提案し，さらに作物⾼，植被率および
植⽣指数をモニタリングする最適な解析⼿法を検討することにより，UAV 空撮画
像に基づいた植⽣評価と農地管理の統合的管理⼿法を確⽴することを⽬的とした．
なお，本論⽂は 7 章から構成されており，2 章では UAV 空撮に関する作成⽅法の
検討，3 章，4 章，5 章では作物を対象として植物体の成⻑評価の検討，6 章では
農地管理に関する UAV 画像の適合性を検討し，7 章では植⽣評価と農地管理を統
合させた UAV 画像による統合管理⼿法を提案する。 
 
 
第⼆章 農地における⼩型 UAV 写真測量のための地上基準点の最適な設置⽅法 
 地上基準点（Ground Control Point, GCP）は，無⼈航空機（Unmanned Aerial 
Vehicle, UAV）リモートセンシングの空撮データの位置情報を校正するための重
要なキャリブレーション⽅法である．近年，GCP の最適な数と分布形状に関する



 

VIII 
 

研究は世界中で⾏われてきた．しかし，住宅・建設現場・農地や森林などにおけ
る調査では，GCP を対象地内部に設置することは困難であり，調査地内の植⽣や
農作物を破壊する可能性がある．したがって，農地等特殊な現場では，GCP を調
査対象の周辺や外縁部のみに設置するのは⼀般的である．この場合，既往の研究
で提案された GCP の最適な設置⽅法は適⽤できない．そこで本研究では，調査対
象地の外縁部のみが利⽤可能な場合に，最も正確的・効率的に空撮データを校正
できるGCPの設置⽅法を提案することを⽬的としている．この研究では，16haの
圃場において，GCPの数・分布形状が異なる 88 個の GCPパターンの補正精度が
⽐較検証された．その結果，GCP が圃場四週において均等分布するパターンが最
良のキャリブレーション（RMSE = 0.15m）を提供できることがわかった．障害
物・圃場の条件などにより上記の分布が実現できない場合には，圃場の半分にお
いて均等分布する⻑⽅形状の GCP パターン，または圃場の三辺に均等分布する三
⾓形状のGCPパターンは適度な補正精度（それぞれ RMSE = 0.18m, 0.43m）を達
成できる．⼀⽅，GCPが直線状になるパターンは，GCPの数が多いにもかかわら
ず最低の補正精度（RMSE = 2.10m）をもたらした．このことから，縦横⽐のバラ
ンスが⽐較的均等的な⼆次元形状（⻑⽅形・三⾓形等）になっている GCP パター
ンは，直線状の GCP パターンより補正効果が良いことわかった．本研究はさらに，
GCP分布指数（GCP Distribution Index, GDI）という指標を提案し，GCPの数お
よび分布形状をともに考慮して GCP の補正精度を推定する⽅法を提案した．本研
究の結果は，農地等内部に進⼊困難な調査地における UAV 空撮調査のためのGCP
の最適な設置⽅法を提案し，UAV の農業現場でのより効率的な活⽤に貢献したと
考えられる． 
 
 
 
 
 
第三章 茎葉形態を考慮した⼩型 UAV による DSM データに基づく作物⾼の推定⽅法 
 UAV は衛星・航空写真と⽐較して安価なコストで，随時に⾼解像度の空撮画像
を取得できるメリットから，農業現場での活⽤が期待さている．UAV 空撮画像に
よる数値表⾯モデル（Digital Surface Model, DSM）を⽤いて作物⾼をモニタリング
する研究は今まで世界中で様々な作物に対して⾏われてきた．しかし，茎葉形態
が⼤きく異なる複数の作物に対する推定精度の違いを検討する研究はまだない．
UAV は⾼解像の空撮画像を提供する⼀⽅，撮影対象物の細部の構造上の差異（農
作物の場合は作物の茎葉形態）は UAV写真測量の結果を⼤きく影響するという特
徴も無視できない．そこで本研究は，単⼦葉植物であるエンバクとリードカナリ
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ーグラスと，双⼦葉植物であるバレイショとエゴマを対象に，UAV による DSM デ
ータを⽤いて全⽣育期間の作物⾼モニタリングを⾏い，推定精度を⽐較すること
で，作物の茎葉形態が推定精度に与える影響を検討した．その結果，葉⾝が卵形
で茎葉が繁茂しているエゴマに対して最⾼な推定精度（R2 = 0.97, RMSE =  5cm）
が得られ，茎葉が繁茂するほど DSM による推定作物⾼の精度が⾼いことかわかっ
た．全期間における推定作物⾼と実測値の回帰⽅程式を⽐較した結果，単⼦葉植
物に対して推定値は常に実測値と⼀定の差を保つ⼀⽅，双⼦葉植物に対しては⽣
育初期において推定値は実測値より低く，作物の成⻑につれ実測値に近付き，最
終的に（作物⾼が 1m 以上）実測値と上回ることがわかった．これらの結果から，
DSM データを⽤いて作物⾼を推定する際には該当作物に適切は回帰⽅程式で DSM
値を補正する必要があることがわかった．さらに，本研究は四種類の常⽤作物の
全⽣育期間における作物⾼の推定式を提供することにより，今後の DSM による作
物⽣育モニタリングのための基礎資料を蓄積した． 
 
第四章 UAV 空撮画像による DSM データと三次元点群データを⽤いた 

作物⾼と地上部体積の推定 
 作物⾼と作物の地上部体積は，UAV 空撮が作物の⽣育度合いを反映する重要な
指標である．従来のリモートセンシングでは DSM データを⽤いて作物の地上部形
態を反映するのが⼀般的であるが，UAV による⾼解像度の空撮画像に基づいた作
物の細部の特徴を忠実に再現する三次元点群データの作物⽣育モニタリングへの
有効利⽤が期待されている．⼀⽅，DSM データは⽐較的軽量であり，⼀般的な地
理情報システムソフトウェアで解析・共有できるメリットに対し，三次元点群デ
ータはデータ量が膨⼤し，可視化されるためには専⽤ソフトウェアが必要である
等のデメリットがある．UAV の農業での効率活⽤のために，DSM データと三次元
点群データの農作物の作物⾼と地上部体積を推定する際の差異を⽐較検討し，調
査⽬的に最適なデータ種類を明らかにする必要がある．そこで本研究は帯広畜産
⼤学の実験圃場において，DSM データと三次元点群データのリードカナリーグラ
スの作物⾼の推定精度と，作物の地上部体積の推定結果を⽐較した．その結果，
三次元点群データは作物⾼の推定において点群データより⾼い精度（それぞれ
RMSE = 4 cm, 3cm，推定式の切⽚ Intercept = 8.8, −0.16）が得られ，三次元点群デ
ータを⽤いて作物⾼を推定する際には回帰⽅程式の補正が不要であることがわか
った．したがって，作物の正確な⾼さや倒伏情報が必要な場合は三次元点群デー
タが適切であることがわかった．⼀⽅，DSM データと三次元点群データによる地
上部体積の推定値は，全⽣育期間において有意差が確認されなかった．このこと
より，地上部体積の推定は⼆種類のデータが同じパフォーマンスを持っており，
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実⽤性を考慮すると DSM データが適切であることがわかった．本研究は異なる⽬
的に応じた UAV 空撮データの種類を提案することにより，UAV 空撮の農業への実
利⽤に貢献したと考えられる． 
 
第五章 異なる地上解像度における⼩型 UAV による NDVI と植⽣被覆率の関係 
 植⽣被覆率は，作物の発育を表す重要な指標であり，AquaCrop 等の作物成⻑シ
ミュレーションモデルにおいて作物の蒸散量を計算する基準でもある．過去にお
いて Landsat や Sentinel2 などの衛星画像による正規化植⽣指数（Normalized 
Difference Vegetation Index, NDVI）を⽤いた植⽣被覆率のモニタリング⼀般的であ
り，衛星画像による NDVI と植⽣被覆率の間に強い相関関係が存在することがわか
っている．近年において，⼩型 UAV の普及が迅速に発展しており，また多種の光
学センサーが搭載可能のメリットにより，農作物の NDVI および植⽣被覆率のモニ
タリングへ利⽤されている．しかし，UAV 空撮画像による NDVI と植⽣被覆率の
関係を検証した研究はまだなく，UAV 空撮画像の⾼解像度をもたらした新たな課
題（細かい地物が観測可能となる）が NDVI と植⽣被覆率の関係への影響はまだ不
明である．そこで本研究は，帯広畜産⼤学の実験圃場内のラッカセイ畑を対象に，
⼩型 UAV による NDVI と植⽣被覆率を，0.5m から 10m の五種類の地上解像度にお
いて⽐較し，異なる地上解像度における NDVI と植⽣被覆率の関係を検討した．そ
の結果，NDVI は 0.5m, 1.0m, 2.5m, 5.0m,および 10m の地上解像度において植⽣被覆
率と強い相関関係（それぞれ R2 = 0.88**, 0.92**, 0.94**, 0.89**, 0.93**）を持つこと
がわかった．また，ANACOVA の結果により，NDVI と植⽣被覆率の回帰⽅程式は
各種地上解像度において有意差がないこともわかった．以上より，空撮画像の地
上解像度は NDVI と植⽣被覆率の関係に顕著な影響を与えず，NDVI による植⽣被
覆率の推算には衛星画像と UAV 空撮画像の併⽤性があることが⽰唆された．⼀⽅，
各回帰⽅程式において，回帰係数は 1.0 に近いにもかかわらず，切⽚は 0.25 であっ
たことから，植⽣被覆率の値が 0 のときに NDVI の値がマイナスであることが⽰さ
れた．その原因は，圃場内に施⽤されているプラスチック製のマルチシートが低
い NDVI値を持っていたからと考えられる．このことから，同じピクセル内に混在
する作物と⼟壌以外の地物は NDVI と CC との正確な関係を求める際に悪影響にな
ることがわかった．今後の研究では，UAV 空撮画像の⾼解像度の特性と⼗分に利
⽤し，作物の⽣育評価指標を正確に計測するために農地内の地物判別が重要な課
題となっている． 
 
第六章 UAV 空撮画像に基づく三種類の地物⾃動判別⽅法の⽐較検証 
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 植⽣・資源や廃棄物等多様な地上物の⾃動判別は，農地や農村地域の環境およ
び統合資源管理の上重要である．また，空撮画像により作物の⽣育を評価する際，
植⽣と⼟壌以外の地物はノイズとなるため，農地内の地物判別は UAV リモートセ
ンシングを農業に実利⽤する際に重要な課題である．今までの UAV 空撮画像分類
⼿法は，主には⼟地利⽤・⼟地被覆マップの作成のために⽤いられており，UAV
空撮画像と衛星画像による⼟地利⽤マップの精度を⽐較する研究は⼀般的であっ
た．衛星や⼤型航空機による空撮画像のメリットは広域なデータを取得できるこ
とである⼀⽅，UAV 空撮画像のメリットは低空⾶⾏による局所の⾼解像度データ
の取得である．そのため，画像分類⼿法の UAV リモートセンシングへの利⽤は，
地域規模の⼟地利⽤マップの作成ではなく，単⼀農地等の局部調査地の地物分類
に注⽬するべきと考えられる．そのため本研究は帯広畜産⼤学の実験圃場におい
て⼩型 UAV により空撮を⾏い，RGB 画像およびマルチスペクトル画像を取得し，
三種類の⾃動分類⽅法（A.NDVI閾値法；B.RGB 画像機械学習法；C.オブジェクト
ベース画像解析（OBIA）法）により地物判別を⾏い，それぞれの⽅法が適す対象
地物を検討した．その結果，NDVI 閾値法は処理過程が簡単であり効率性が良く，
植⽣と⼟壌を⾼精度で識別できたが，衰弱植⽣やプラスチック製品と⾦属製品の
識別では精度が低かった．RGB 法と OBIA 法は両⽅とも教師あり機械学習を適応
しており，画像処理にあたり時間と労⼒が必要だったが，植⽣，⼟壌，プラスチ
ックおよび⾦属の分類に⾮常に⾼い精度が得られた．具体的に，RGB 法は全体精
度が最も⾼く，特にプラスチック製のブルーシート等明るい⾊の地物の識別に優
れているが，衰弱植⽣をそれと類似した⾊の⼟壌として分類する傾向を⽰した．
⼀⽅，OBIA 法は近⾚外域のデータを使⽤したため，⼟壌と衰弱植⽣等視覚的に類
似した地物の識別に⾼いパフォーマンスを⽰したが，総合的な分類精度は RGB 法
よりわずかに低かった．これらの結果は，UAV 地物判別の対象物に合った適切な
⽅法を選択するのに役⽴ち，農地や農村地域の統合資源管理の改善に貢献できる
と考えられる． 
 
第七章 総括 
 本論は農地における UAV 空撮画像の最適な位置補正⽅法，作物⾼と地上部体積
の推定⽅法の検討と⽐較，植⽣指数と作物被覆率の関係，そして農地内の地物判
別という四つの視点から，UAV 空撮画像の農地への利⽤⽅法を統合的に検討した．
その結果，農地における UAV 空撮には圃場を囲む 6個以上の GCP は⼗分であり，
6個以下を使⽤場合には GDI により補正精度を予測し，GDI が 3 以上の場合には農
地調査に適す補正精度が得られることがわかった．作物⾼を推定するため，DSM
を使⽤する場合には作物の茎葉形態が推定精度に影響を与え，対象作物に適した
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回帰モデルを使⽤することがわかった．⼀⽅，点群データは作物の細部の特徴を
忠実に復元し，倒伏判別等のために特定位置の詳細な作物⾼を抽出するに適して
いる．作物の地上部体積を推定する際に，DSM と点群データは同様な推定結果を
提供するため，通⽤性が⾼く処理が⽐較的簡単な DSM が適すことがわかった．ま
た，空撮画像の地上解像度は NDVI と CC の関係に有意な影響を与えないため，
NDVI と CC の換算に異なるプラットフォームによる空撮画像を使⽤することが可
能であることがわかった．さらに，農地内の植⽣と⼟壌以外の地物は NDVI による
作物⽣育評価に悪影響を与え，農地内の地物判別が重要であるため，本研究は
RGB 画像またはマルチスペクトル画像による地物分類⽅法を⽐較検討し，異なる
地物の判別に最適な分類⽅法を提案した．以上のことから，UAV 空撮画像の利点
である⾼解像度の画像と点群データを活⽤することで，作物の成育ステージに応
じた成育評価を⾏うことが可能であることが明らかになった。また，圃場の管理
をする上で，対象物に応じた画像の選択を⾏うことが重要であることが⽰された． 
 この論⽂の新規性は：GCP 設定を数と空間分布の両⽅で評価するための独⾃の
指標を開発したこと；DSM から得られた草丈と基準値との偏差の理由を解明し，
緩和⽅法を提案したこと；さまざまなデータ型によるクロップ構造の制限の違い
について説明し，各⽅法の適切な使⽤法を提案したこと；さまざまな解像度で 
UAV によって検出された NDVI と CC の間の線形相関を検証し，UAV によって植
⽣指数を監視する際のエラー要因を解明したこと； ⼟地利⽤分類法を農地での地
上物体の識別に適⽤し，異なる材料で作られた物体を識別するための適切な⽅法
を提案したことである．これらの結果により，導⼊時の質問に答えることができ
た．この研究によって⽰唆された結果は，統合管理のフローチャートとして要約
することができる． UAV によって取得された RGB 画像を使⽤して DSM データと
ポイント クラウド データを構築でき，これらのデータは，植物の⾼さまたはキャ
ノピー ボリュームを計算することにより，初期の成⻑段階で作物の状態を監視す
るのに役⽴つ．⼀⽅，成⻑の後期段階では，草丈の増加が⽌まると，UAV によっ
て取得されたマルチスペクトル画像によって計算されたキャノピー カバーと 
NDVI は，作物の成⻑の監視に適している．さらに，この研究で議論された地表オ
ブジェクトの識別は，キャノピーカバーまたは NDVI を使⽤して作物の状態を評
価する際の精度を⾼めるだけでなく，より良い農地管理戦略と環境にも貢献する
可能性がある． 
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Chapter 1 Backgrounds and Objectives 
 

1.1 Backgrounds 

    According to the results of the agricultural labor force survey conducted by the Ministry 
of Agriculture, Forestry and Fisheries in 2019 [1], the agricultural working population was 
1.681 million, a decrease of about 60% for 20 years ago (3.891 million). Abandoned farmland 
is increasing due to the drastic decrease in the number of farmers engaged in agriculture, and 
large-scale agriculture is progressing in Japan, such as consolidating small-scale farmlands 
and expanding the management area per household. In addition, the percentage of people 
aged 65 and over among the population working in agriculture has reached 70.2%, a marked 
increase from 20 years ago (20.8%), further aggravating the problem of labor shortage. 
Against this background, precision agriculture has been developed as a technology for more 
labor-saving, efficient, and precise farm management that makes full use of precise farm 
management plans based on sensing information, and automatic control of agricultural 
machinery based on digital mapping development are emphasized [2].  

    Compared to precision agriculture, traditional farming techniques emphasize the know-
how and skills of farmers [3]. For example, the technology of diagnosing crops and soil by 
visual judgment, the technology of decision-making based on long-term farm management 
and exchanges between farmers, and the technology of work are emphasized. However, such 
a farming method requires long-term construction research and subjective judgment of 
farmers, and the hurdles are becoming higher in the current situation where the number of 
farmers is decreasing, and aging is progressing. On the other hand, in precision agriculture, 
emphasis is placed on the development and dissemination of data-based, objective, and easy-
to-communicate technology [4]. For example, remote sensing technology, information 
communication technology, application of artificial intelligence, and the development and 
use of agricultural robot technology [5]. In this way, precision agriculture can improve yield 
and quality by optimizing production management and can save labor and materials [6].  

    Spatial information about crop growth and soil conditions for each field or within a field 
is particularly important for promoting precision agriculture [5]. As basic information for 
planning and making decisions on farming; or as a digital map for agricultural machinery 
control. In addition, it becomes an important information source as agricultural field spatial 
information that plays a part of big data that drives artificial intelligence [7]. Therefore, 
remote sensing by satellites and UAVs has been used as a method for spatially measuring 
crop growth and actual conditions of soil which plays a large role in precision agriculture [8].  

Since World War II, satellites have been launched based on advances in the three 
technologies of sensors, platforms, and computers, and have become essential technologies 
for modern remote sensing [9]. However, satellite data cannot be obtained due to cloud cover, 
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and there is a possibility that we will miss the right time to observe the growth of crops. 
Landsat satellites, Terra satellites, and SPOT satellites used in agriculture have a ground 
resolution of several tens of meters [10]. Therefore, the development of new remote sensing 
platforms suitable for crop monitoring is an important issue in promoting smart agriculture 
today [11]. Since the 2010s, UAVs (Unmanned Aerial Vehicles) include Parrot (France, 
launched AR Drone in 2010), DJI (China, launched Phantom series in 2012), 3D Robotics 
(USA, launched Iris in 2013) have made dramatic progress in performance and spread around 
the world, and have come to be used in various applications such as disaster relief, civil 
engineering surveying, pesticide spraying, and infrastructure inspection [12]. Compared with 
satellite data, UAVs have advantages such as high maneuverability, high resolution, and low 
altitude flight (not affected by clouds) [13]. At present, with the development of GPS (Global 
Positioning System), GIS (Geographic Information System), optical sensors, information and 
communication technology, and the development of legal systems, UAVs are seen as a stable 
platform for smart agriculture [14].   

    As for spatial resolution, in the case of UAV, it is possible to achieve ultra-high resolution 
of several millimeters to several centimeters by appropriately selecting flight altitude and 
sensor specifications [15]. Therefore, it is also used to detect weeds in the early stages of 
emergence, insect pests adhering to leaves, and minute pieces such as disease symptoms [16] 
[17] [18]. On the other hand, unlike satellites, it is difficult to cover a wide area with a single 
shot [19], and in this respect, there is a conflict with spatial resolution, so there is a need for 
exploring in more detail about the optimal observation targets and research objectives for 
satellites and UAVs.  

    High-resolution satellite sensors are promising for the production of high-quality images 
on a regional scale, taking advantage of wide-area observation capabilities. On the other hand, 
UAV remote sensing can observe a relatively small area from a low altitude, so it is promising 
for smart management of many fields in farming on a scale of about less than 100 ha [19]. 
Compared to satellite remote sensing, one of the advantages is that it is possible to select the 
on-board sensor and resolution relatively flexibly [20]. Referring to the current state of the 
world of UAV remote sensing applications in the vegetation environment field, the majority 
of case studies are at the level of digital camera-equipped observation or vegetation index 
map creation. Therefore, at present, low-cost and simplicity are often emphasized rather than 
advancedness, and the reports are limited to small-scale and general reports. In fact, the lack 
of advancedness and novelty compared with the satellite remote sensing has become one of 
the main limitations for widespread use of UAV practicality in agriculture field.  

    Based on this background, the fully utility of the advantages of UAV remote sensing by 
studying the unique feature of the UAV remote sensing products has become a crucial task 
for applying UAV to precision agriculture. This study constructed a measurement system 
using various sensors on UAV, and while auditing the above restrictions, applied data 
collection methods and image analysis methods for actual large-scale farms, and created 
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diagnostic maps, an integrated evaluation method has been suggested. In this chapter, the 
applicability of international UAV remote sensing to precision agriculture will be discussed. 

 

1.2 Research Problems and Aims of This Study  

In the last decades, there has been many developments in precision agriculture for 
increasing the crop productivity in major fields such as geolocating, variable monitoring, 
strategy making and practicing [21]. However, the global agriculture production system is 
still facing many challenges, caused by the increasing global population [22], the climate 
change [23], the calorie-intensive diets, food, and biomass production for biofuel [24]. 
Agriculture production is affected by crop variability, soil variability, field management 
variability and climate variability [25]. These variabilities result in differences in crop growth 
that can be quantified by monitoring the physical structure or optical features of the above 
ground part of the crop [26]. For example, normalized difference vegetation index (NDVI) 
[27], leaf area index (LAI) [28], canopy cover (CC) [29], plant height (PH) [30], above 
ground biomass (AGB) [31], and the nitrogen status[32]. Proper timing and quantity of 
fertilizer and topdressing are crucial factors for the final yield of crop yield [33]. On the other 
hand, over topdressing can cause lodging or leggings which have significant reducing effect 
of crops such as the grain and horticultural crops [34], and also have impact on water quality 
of the agriculture area [35]. Accurate information of the crop status is important for proper 
application of fertilizer and pesticide.  

Data for monitoring crop growth are most valuable when captured with high spatial and 
temporal data resolution to adequately detect variability within agricultural fields. 
Advantages to use Unmanned aerial vehicles (UAVs) for monitoring crop growth are UAVs 
filling a niche in observation scale, resolution and height between manned aerial platform 
and ground [36]. High resolution data can be collected due to the short distance from the 
detection target, Minimizes atmospheric effects in the image. The mayor's advantage over 
satellite imagery is fast data acquisition with cloud pendency and revisit times and real-time 
capabilities [37]. In addition, high flexibility provides high temporal resolution of data 
acquisition [38]. These characteristics make the UAV very suitable for many agricultural 
applications [39][40]. An example is spraying from unmanned helicopters, which is most 
prevalent in Japan. More than 10% of his paddy fields have been sprayed using this technique 
[41]. 

    Several authors have shown how to combine UAVs with lightweight sensors for crop 
monitoring. Crop health is the most popular topic in this regard [42].  For example, proposed 
by HUANG et al. (2010) for cotton fields, NEBIKER et al. (2008) for vineyards, and 
CALDERÓN et al. (2014) for Poppies [43][44][45]. Further research investigated water 
stress Irrigation by using thermal and multispectral sensors [46][47][48]. Existing research 
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on drone-based crop growth monitoring includes assessment of biomass and nitrogen status 
[49], and derivation of a vegetation index to correlate it with LAI or nitrogen uptake 
[50][51][52]. However, with the high spatial resolution of UAV imagery, the ground objects 
other than vegetation and soil with various spatial features and reflectance characteristics 
give significant influence on the observation result when monitoring LAI, NDVI and other 
vegetation indices. In the other hand, in the case of traditional remote sensing such as satellite 
imagery, these influences could be ignored since the observation scale is large. The high 
spatial resolution contributes to a more precise observation but need more study and analysis 
procedures to be fully used as an advanceness. In addition, plant height is an important 
parameter for crop growth monitoring. With the extremely high spatial resolution of UAV 
imagery, the difference of plant shapes between different crops gives significant influence of 
the observation result when monitoring plant height using UAV. Few studies have examined 
crops with different stomatal morphologies at the same time, in the same region, and under 
the same flight conditions. In particular, there have been no studies comparing 
monocotyledonous and dicotyledonous plants, which differ greatly in stomatal morphology 
and cultivation methods, under the same conditions. 

   The precise and accurate geolocation information is another important factor for both the 
remote sensing and the strategy practicing for precision agriculture. Direct georeferenced 
using Ground Control Point (GCP) is currently the most common method to calibrate the 
position information of UAV imagery. Before the UAV photography is conducted, anti-
aircraft signs are placed on the GCPs, so that the points can be identified from the UAV 
photographs. The position information of the photographs is corrected afterwards during the 
bundle adjustment within the Structure-from-Motion (SfM) software by inputting the correct 
coordinates of the GCP [52]. Many previous studies of the influence on the GCP setting to 
the horizontal or vertical accuracy of the SfM products. Evaluating the quality of GCP setting 
is a complex task because many variables have to be taken into consideration. Over the years, 
various studies have analyzed the effect of the number and spatial configurations of the GCPs 
used for indirect georeferencing [53][54][55][56]. However, for agricultural surveys, setting 
GCPs inside the crops is destructive for the growing plants and will cause disruptions to field 
management. It is necessary to acknowledge that in many surveying sites, only the outer 
edges of the subject area are available for GCP placement. Based on this reality, the current 
study aims to create a standard to evaluate the quality of GCP setting to provide a guideline 
for researchers or surveyors of UAV photogrammetry to decide the most optimal number and 
spatial configuration of GCPs without intruding into the subject area.  

   To actually practice UAV remote sensing to agriculture, the problems in real sites of 
farmland need to be further discussed. Therefore, in conclusion, the key research questions 
for this thesis are:  

1. What is the optimal way to set GCPs during UAV survey at a farmland with growing crop?  
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2. What caused the estimation error when monitoring plant height of crops using UAV-based 
DSMs, and what is the solution?  

3. What is the difference between the DSM data and the point cloud data when monitoring 
plant height and canopy volume of crops?  

4. What is the relationship between NDVI and canopy cover sensed by UAV, and what 
caused the difference between the theoretical result and the observation result?  

5. What procedure contributes to more accurately observe NDVI or canopy cover of crop 
using UAV?  

 

1.3 Outline 

At this thesis, Chapter 2 examines the preparation method for UAV aerial photography. 
Chapter 3 to Chapter 5 examined the growth evaluation of crops, Chapter 6 examines the 
suitability of UAV images for farmland management, and, and Chapter 7 proposes an 
integrated management method using UAV images that integrates vegetation evaluation and 
farmland management. This paper presents four perspectives: optimum position correction 
method for UAV aerial images in farmland, study and comparison of methods for estimating 
crop height and ground volume, relationship between vegetation index and coverage rate, 
and discrimination of features in farmland.  

The utilization of UAV aerial images for farmland was investigated in an integrated 
manner. As a result, it was found that 6 or more GCPs surrounding the field are the most 
sufficient, but when less GCPs are used, suitable accuracy could be obtained if GDI is above 
3 for UAV aerial photography in farmland.  

When using DSM to estimate crop height, it was found that the foliage morphology of 
the crop affected the estimation accuracy, and regression models suitable for the target crops 
were necessary. On the other hand, point cloud data is suitable for extracting detailed crop 
heights at specific positions for determining the lodging of crops, as it faithfully reproduces 
the details of the crops. It was found that DSM, which has high versatility and is relatively 
easy to process, is suitable for estimating above-ground volume of crops.  

Also, since the ground resolution of aerial imagery does not significantly affect the 
relationship between NDVI and CC, it is possible to use aerial imagery from different 
platforms for conversion between NDVI and CC. In addition, features other than vegetation 
and soil in farmland adversely affect crop growth evaluation by NDVI, and feature 
discrimination in farmland is important.  
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In this study, a comparative study of different vegetation indices was carried out, and 
the optimal classification method for distinguishing different features was proposed. From 
the above, it became clear that it is possible to perform growth evaluation according to the 
growth stage of crops by utilizing the high resolution and point cloud data, which are the 
advantages of UAV aerial images. By performing integrated crop evaluation and field 
management using UAV that integrates these results, we were able to establish a more precise 
evaluation method using UAV aerial images. 
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Chapter 2 Optimization of Ground Control Point Distribution for Unmanned Aerial  

                   Vehicle Photogrammetry in Farming Land  
 

2.1 Introduction 

     Remote sensing employing unmanned aerial vehicles (UAVs) is becoming a popular and 
trustworthy technology for both users and researchers in many technical fields. UAVs have 
an extremely high observation resolution compared with satellite remote sensing data, and 
higher efficiency and utility than laser scanning remote sensing. These advantages have made 
UAV one of the most optimal platforms for local regional scale remote sensing. The rapid 
developments in both engineering and sensor technology have enabled UAVs to contribute 
to a variety of uses, such as constructing three-dimensional terrain models of mountainous 
areas [1], water bodies [2], farming land [3,4,5], forests [6,7,8,9,10], and artificial structures 
[11], as well as estimating biomass storage of wood or grass resources [12,13], monitoring 
crop growth status [14], grasping the condition of disaster areas [15], and evaluating 
ecosystem service [16]. 

    When a highly accurate topographic map is required, or the photographs of a certain area 
taken by multi-temporal surveys need to be overlapped and compared to see dynamic changes, 
the position information of the UAV remote sensing data must be corrected and optimized. 
This is because the position information obtained by the geographic positioning system (GPS) 
equipped on UAV has a limited accuracy, which may be unstable due to the weather or 
satellite signal reception [17]. 

    The use of ground control points (GCPs) is one of the most commonly used methods to 
correct the position information of UAV imagery. With this method, several GCPs are set 
inside or around the subject area, for which coordinates (x, y, z) are measured by precise 
positioning equipment such as the real-time kinematic global navigation satellite system 
(RTK-GNSS). Before the UAV photography is conducted, anti-aircraft signs are placed on 
the GCPs, so that the points can be identified from the UAV photographs. The position 
information of the photographs is corrected afterwards during the bundle adjustment within 
the Structure-from-Motion (SfM) software by inputting the correct coordinates of the GCP 
[18]. 

    Although the use of GCPs contributes greatly to the accuracy of photogrammetric products 
(such as orthomosaic and digital surface models), settlement and measure of the GCPs are 
time-consuming works. Therefore, UAVs with global navigation satellite system real-time 
kinematic (GNSS-RTK) on board have been gathering attention [19]. Specifically, the UAV 
post-processed kinematic (PPK) and real-time kinematic (RTK) are two kinds of 
technologies that are commonly used for the direct georeferencing, and the accuracy could 
be very close to that of the projects using a reasonable GCP distribution [20,21,22,23]. 
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However, the elevation error of these approaches varies significantly depending on the 
experimental equipment and the object surface morphology, resulting in an unstable 
elevation accuracy [24], and a double-grid oblique flight in differential mode is required to 
achieve the similar accuracy with the GCP method [25]. There are still also limitations to 
these approaches. For example, the network transmission (NRTK) which supports the real-
time differential correction of RTK is easily affected by the long reference distance when the 
flight path of the UAV is long [26]. Moreover, during the SfM procedure, when the UAV 
data are expressed as a vertical ‘doming’ of the surface, which is caused by a combination of 
near-parallel imaging directions, the absence of GCPs can easily lead to a systematic broad-
scale error (as known as the dome effect) [27]. Furthermore, in practice, UAVs with GNSS-
RTK onboard are still costly, which restricts their wider use in developing countries or rural 
areas. Based on this background, the utilization of GCPs is still necessary for UAV 
photogrammetry to meet the requirement of sustainable resource management. 

    There are many previous studies of the influence on the GCP setting to the horizontal or 
vertical accuracy of the SfM products. Evaluating the quality of GCP setting is a complex 
task because many variables have to be taken into consideration. Over the years, various 
studies have analyzed the effect of the number and spatial configurations of the GCPs used 
for indirect georeferencing [28,29,30,31,32,33,34,35,36,37]. Most of the above research 
assumes that the higher the number of GCP used, the better the overall accuracy. For example, 
Mirko et al. (2019) tested the accuracy obtained from various photogrammetric workflows 
in 3D modeling of a coastline georeferencing. The results showed that 3 GCPs are needed 
for reasonable georeferencing, efficient results may be obtained using 6–7 GCPs, and more 
than 15 GCPs are necessary to produce accurate cartographic works [38]. 

    However, the number of GCPs is not the only variable that affects the calibration accuracy. 
The position of each GCP used is also a crucial factor that needs to be considered during the 
surveys. For example, Oniga et al. assessed the UAV photogrammetric accuracy using 
different GCP settings at an urban area of about 1 ha in Romania. The results not only showed 
that a higher number of GCPs improves the accuracy, but also suggested the facts such as the 
GCPs in the corners of the study site are essential, placing the GCPs along the border of the 
study block is not optimal, and interior GCPs are improving the accuracy significantly [39]. 
Awasthi et al. (2020) discussed the accuracy of UAV-based photogrammetric products in 
corridor mapping and area with undulating terrain for different sets of GCP settings. The 
results showed that the GCPs should be established in places covering all elevations with a 
minimum of five GCPs in the shape of a die [40]. Cabo et al. (2021) used generalized additive 
models (GAMs) to analyze the relationship between the root mean squared error (RMSE) 
and the mean absolute error (MAE) in the Z coordinate in a group of checkpoints and in a set 
of covariates related to the number and spatial distribution of GCPs. As a result, among the 
different predictor variables (describing GCP number and distribution), the number of GCPs 
had the greatest influence on vertical accuracy. Other variables such as mean distance 
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between control points or distance of checkpoints from their nearest GCP contribute much 
less to explaining RMSE and MAE [41]. Villanueva and Blanco (2019) presented a method 
for assessing the impact of GCP distribution, quantity, and inter-GCP distance on the output 
digital elevation model (DEM) by utilizing SfM and GIS. The results showed that the best 
configuration was the evenly distributed GCP set, configurations clumped to the edge and 
distributed to the edge had the lower accuracy, and those configurations clumped to the center 
yielded the worst accuracy [36]. Furthermore, the Geographical Survey Institute of Ministry 
of Land, Infrastructure, Transport, and Tourism of Japan also suggests that at least four GCPs 
should be used and must be set both surrounding and inside the subject area to obtain 
satisfactory accuracy for public surveying with UAV [42]. However, none of the previous 
studies above has covered all the variables that affect the quality of GCP setting, such as the 
number of GCPs, the distance between GCPs, or the distribution configuration of GCPs. 

    Furthermore, most of the previous studies have agreed that GCPs should be evenly spaced 
around the subject area if possible, and the more GCPs are used, the higher the accuracy is 
expected. However, the most basic aim and advantage of UAV remote sensing is to observe 
areas that are difficult or impossible for investigators to enter. For example, for land surveys, 
it is difficult to set the GCP on artificial structures; in the case of forest surveys, the anti-
aircraft signals cannot be recognized even if the GCPs are placed and measured inside the 
forest; in the case of ecosystem service surveys, it is impossible to set stable GCPs at the 
center of a water body such as lakes or rivers; and for agricultural surveys, setting GCPs 
inside the crops is destructive for the growing plants and will cause disruptions to field 
management. Therefore, it is necessary to acknowledge that in many surveying sites, only 
the outer edges of the subject area are available for GCP placement. Based on this reality, the 
current study aims to create a standard to evaluate the quality of GCP setting to provide a 
guideline for researchers or surveyors of UAV photogrammetry to decide the most optimal 
number and spatial configuration of GCPs without intruding into the subject area.  

 

2.2 Methodology 

2.2.1 Study site 

The survey for this study was conducted at an experimental field located in the agricultural 
area of Obihiro City, Hokkaido, Japan (Latitude: 42.3728°, Longitude: 142.9985°, Elevation: 
261 m above sea level, Figure 2.1). The study site was approximately 300 × 400 m (12 ha), 
with the elevation change of 7.5 m. The experimental field was selected as the study area 
because the difference in elevation was small, so that the topographic factor would not have 
significant influence on the georeferencing error. Moreover, it was a typical sample of 
cropland or grassland, which would be an inaccessible area during the growing season of the 
crop. 



 

15 
 

 

Figure 2.1 Study site location. 
 

2.2.2 Data collection 

    The field survey was conducted on 21 August 2021. The weather was sunny, and the wind 
speed was less than 2 m/s during the whole survey period. As shown in Figure 2.2, twelve 
GCPs were evenly distributed at the outer edge of the study site. The distance between two 
nearest GCPs was between 48 m and 144 m. However, twenty checkpoints were evenly 
distributed across the whole area of the field. The anti-aircraft signals were placed on the 
GCPs and checkpoints. The size of the anti-aircraft signals for GCPs was 60 × 60 cm, while 
the size of those for checkpoints was 35 × 35 cm (Figure 2.3). All the points had a clear view 
of the sky and maintained a distance of at least 5 m from the trees or houses.  
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Figure 2.2 Distribution of GCPs and check points inside the study site.  
 

 

Figure 2.3 Anti-aircraft signals (Left: For GCPs; Right: For check points).  
     

    The coordinates of the GCPs and the checkpoints were determined using an RTK-GNSS 
receiver (Hiper V, TOPCON, Tokyo, Japan) in real-time kinematic mode. The distance 
between the study site and the nearest electronic reference point (Taisho Town, Obihiro City) 
was 9.43 km. The antenna height of the receiver was 1.80 m above ground (Figure 2.4). 
According to the manufacturer of the RTK-GNSS equipment, the MAE of the measured 
coordinates was expected to be 10 mm horizontally and 15 mm vertically. The GCP and 
check point coordinates were used to correct the position information of the UAV 
photogrammetry results and verify the accuracy of the corrected photogrammetry results, 
respectively. 
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Figure 2.4 RTK-GNSS (TOPCON HiperV) measuring.  
 

    The UAV photography was conducted after the GCPs and checkpoints were placed and 
measured. The UAV used in this study was the Inspire 2 (DJI Inc., Shenzhen, China, Figure 
2.5). The camera used to obtain the RGB imagery was the Zenmuse X5S (9–45 mm, 
resolution: 5280 × 3956). During photography, the camera angle was set to be vertical 
downward. Two flights were conducted to capture the whole field area because of the battery 
limitation. Both flights were flown based on the same parameters using an auto flight 
application Pix4D capture (Pix4D, Lausanne, Swiss). The flying altitude was 50 m above 
ground; the overlap was 70% by top and 70% by side. The total flying time was 31 min 23 s 
and total flying distance was 10.045 km, covering a total area of 16 ha and collecting 780 
images. 

 

 

Figure 2.5 UAV photography with Inspire2 at the study site.  
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2.2.3 Data Processing 

2.2.3.1 Workflow 

    The data process workflow is shown in Figure 2.6. The UAV imagery was processed 
using an SfM software (Pix4D mapper ver 4.5.6, Pix4D, Lausanne, Swiss). After inputting 
the images into the software, the initial step of SfM, which is the bundle adjustment including 
the image alignment and camera parameters viewpoint calculation, was performed. Next, the 
three-dimensional tie point cloud describing the surface model of the object area was 
constructed. The tie point cloud included the sparse points with 3D coordinates acquired from 
the GPS information of the UAV images. Subsequently, a high-density point cloud was 
constructed based on this sparse tie point cloud. Then, as the final production of the SfM, a 
digital surface model (DSM) and orthomosaic was constructed based on the high-density 
point cloud. Therefore, to provide accurate position information to these photogrammetry 
results, the position calibration using a well-distributed GCP set needs to be applied right 
after the tie point cloud is constructed. To discuss the optimal GCP establishment, this study 
has created 88 kinds of GCP set patterns with different GCP number and distribution. Each 
GCP pattern was then used to calibrate tie point cloud derived from the original UAV images 
at the SfM software, and the calibrating accuracy were compared to reveal the effect by GCP 
distribution on the georeferencing accuracy. The details of these GCP patterns are introduced 
in the Section 2.3.2. 

 

Figure 2.6 Data process workflow.  
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    After inputting the GCP information and optimizing the tie point cloud, the software 
exported a quality report including the bundle adjustment details (the calculated camera 
position, overlap, and number of key points matches) and geolocation details of the process 
so far for each GCP pattern. The geolocation details included the Error X, Error Y, and Error 
Z of both GCPs and check points. Error X stands for the difference between the computed 
GCP/check point 3D point and the original position obtained from UAV images in the X 
direction (original position—computed position); the same process was followed for the 
Error Y and Error Z. For clarity, this study uses “horizontal error” and “vertical error” to 
stand for the difference between the computed GCP/check point and the original position in 
horizontal and vertical directions. The calculation for horizontal error is shown in Equation 
(1). The value of vertical error was the same as that for Error Z.  

 

Horizontal	Error = 	-(Error	X)! + (Error	Y)!                                                  (1) 

 

    Then, the Horizontal Error and Vertical Error of both GCPs and check points (20 points) 
were evaluated. During the error evaluation step, the relationship between the GCP and check 
point errors was examined. There is a possibility that the measurement of the GCP 
coordinated with RTK-GNSS may have outliers. If there were any missed data used to 
calibrate the point cloud, the calibration result would be misdirected and lose their reliability 
and reproducibility. To ensure that there were no missing data among the GCPs, the 
correlation between the error of each GCP and the error of all the check points was 
determined. If a few GCPs was mismeasured, then the error of these mismeasured GCPs 
would have a higher correlation with the error of the test points. 

    Finally, the evaluation of the twenty check points was conducted. To fully assess the 
calibration effect of the GCP patterns, this study discussed four GCP distribution factors that 
affect the accuracy of the check points: the GCP number, position of the check points, 
distance between the check points and the GCPs, and GCP distribution index (GDI). The 
details of the GDI calculation are explained in Section 2.2.3.3.  

 

2.2.3.2. GCP Patterns 

    The 88 GCP patterns were separated to six groups due to the number of GCPs that were 
used. These six groups were named the 3-GCP Group (twelve patterns), the 4-GCP Group 
(twenty patterns), the 5 GCP-Group (sixteen patterns), the 6-GCP Group (twenty patterns), 
the 8 GCP-Group (eleven patterns), and the above-10-GCP Group (nine patterns). Within 
each group, the GCP patterns were separated into several types based on the configuration of 
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GCPs, which were the (A) corner, (B) diagonal, (C) half side, (D) straight line, and (E) 
surrounding types. 

    Additionally, not all the six groups contained all types. For example, the 3-GCP group did 
not contain (C) the half side type, because when only three GCPs were used, (C) the half side 
type was not significant different from (B) the diagonal type. Similarly, the 8-GCP Group 
and the above-10-GCP Group did not contain (A) the corner type, because when there were 
more than eight GCPs applied, it was impossible to distribute them at one corner of the field. 
Additionally, only the 4-GCP Group and 5-GCP Group contained (D) the straight-line type, 
because this type was made to discuss the case of settling GCPs at one side of the field, and 
only the GCP configurations formed by four or five GCPs resembled that scenario. The 
typical patterns of each group and configuration type are shown at Figure 2.7.  

 

 

Figure 2.7 Typical GCP patterns of each group and each configuration type.  
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2.2.3.3. GCP Distribution Index Calculation 

    To recommend the optimal GCP distribution that is applicable to different locations and 
periods, some studies have described GCP distribution quantitatively using the GCP density. 
For example, Gindraux et al. (2017) determined ρGCP (1/km2) as the density of GCPs per unit 
area [41]. However, this method reduced one dimension, which was the spatial bias inside 
one square kilometer. With this method, as long as the quantity of GCPs inside a certain area 
was the same, even if they were clumped in the center or distributed at the edges, the GCP 
density was the same. Knowing the optimal number of GCPs calculated by the optimal GCP 
density, users of UAV photogrammetry still face the problem of how to distribute the GCPs. 
It is a crucial problem, because the configuration of GCPs also has a significant effect on the 
photogrammetric accuracy [39]. In this study, the GDI has been used to quantify the GCP 
distribution considering not only their quantity but also their spatial bias. The GDI was 
calculated by Equation (2). 

 

GDI = !"#$!"#
!"#$$%&'(

× 𝑁𝑢𝑚𝑏𝑒𝑟%&'	                                          (2) 

 

In this equation, AreaGCP [m2] indicates the area surrounded by GCPs, while AreaWhole [m2] 
indicates the whole subject site. When the number of GCP is the same, the larger the area 
surrounded by GCPs, the higher the GDI value. However, when the area surrounded by GCPs 
is the same, the more GCPs are used, the higher the GCI value.  

 

2.3. Results 

2.3.1. Relationship between GCP Error and Check Point Error 

    The coordinates of twelve GCPs and twenty check points measured by RTK-GNSS (Table 
2.1) were used as the reference data to calculate the GCP error and check point error. The 
coordinate system used in this study was the Japan Geodetic Datum 2011 (JGD2011)/Japan 
Plane Rectangular CS XIII. The relationship between GCP error and check point error is 
shown in Figure 2.8. The correlation coefficient of horizontal errors was 0.21*, suggesting 
the horizontal error of GCPs and check points had a low correlation. Furthermore, the p value 
of the correlation between the vertical error of GCPs and check points was 0.065, suggesting 
that the vertical GCP error had no significant correlation with the vertical check point error. 
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These results suggested that the GCP coordinate error had no significant effect on the check 
point error. This proved that the check point error was not caused mismeasured GCP 
coordinates, but by the distribution configuration or quantity of GCPs and check points. 
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Table 2.1 Coordinates of GCPs and check points. 
JGD2011/Japan Plane Rectangular CS XIII. 

No. X (m) Y (m) Z (m) 
GCP 01 −139,952.522 −102,272.435 256.863 
GCP 02 −140,070.595 −102,347.832 256.432 
GCP 03 −140,154.070 −102,386.420 258.195 
GCP 04 −140,230.000 −102,493.170 261.535 
GCP 05 −140,182.974 −102,530.043 262.111 
GCP 06 −140,131.528 −102,482.524 260.648 
GCP 07 −140,076.385 −102,436.148 259.196 
GCP 08 −139,928.018 −102,314.091 256.773 
GCP 09 −139,875.156 −102,377.220 257.424 
GCP 14 −139,962.953 −102,649.875 260.426 
GCP 15 −139,879.514 −102,579.624 260.368 
GCP 16 −139,781.105 −102,486.545 258.573 

Check Point 01 −139,986.148 −102,295.145 255.291 
Check Point 02 −140,004.484 −102,309.756 255.227 
Check Point 03 −140,040.503 −102,338.486 255.722 
Check Point 04 −140,100.647 −102,350.477 256.539 
Check Point 05 −140,187.101 −102,414.480 259.264 
Check Point 06 −140,195.925 −102,448.142 260.514 
Check Point 07 −140,230.253 −102,478.878 261.134 
Check Point 08 −140,218.267 −102,506.576 261.775 
Check Point 09 −140,149.903 −102,498.298 261.168 
Check Point 10 −140,035.921 −102,402.136 258.011 
Check Point 11 −139,983.693 −102,358.083 257.232 
Check Point 12 −139,892.041 −102,356.891 257.200 
Check Point 13 −139,910.263 −102,404.505 258.142 
Check Point 14 −139,980.764 −102,464.030 259.577 
Check Point 15 −140,075.091 −102,543.271 261.686 
Check Point 16 −140,107.254 −102,618.705 263.118 
Check Point 17 −139,989.584 −102,672.110 260.428 
Check Point 18 −139,917.891 −102,611.724 260.960 
Check Point 19 −139,837.641 −102,544.269 259.622 
Check Point 20 −139,826.454 −102,434.035 257.530 
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Figure 2.8 Relationship between GCP error and check point error: (a) Horizontal 
error; (b) Vertical error (**: p-value < 0.01; *: 0.01 ≤ p-value < 0.05). 

 

2.3.2. Relationship between GCP Number and Check Point Error 

    Figure 2.9 shows the relationship between the number of GCPs and check point error 
(horizontal and vertical). For all GCP groups, the vertical check point error was lower than 
the horizontal error. This was because the study site was flat with little difference in elevation. 
Both vertical and horizontal error decreased with the increase in the GCP number. In 
particular, the horizontal error decreased significantly from 0.611 m to 0.144 m when the 
GCP number increased from five to six. This suggested that for a subject field with the area 
of approximately 10 ha, using at least six GCPs would efficiently improve the calibration 
compared to using less than five. 
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Figure 2.9 Relationship between GCP number and mean check point error.  
 

    However, even though the average horizontal error of the 3-GCP Group, 4-GCP Group, 
and 5-GCP Group was significantly higher than the groups with more GCPs, it did not mean 
that all the patterns with three, four, or five GCPs had low calibration. As shown in Figure 
9, all the three groups had an extremely high standard deviation (STDEV) value of the check 
point error. The STDEV for the 4-GCP Group and 5-GCP Group (0.884 m and 0.940 m, 
respectively) was even larger than the mean horizontal error (0.813 m and 0.744 m, 
respectively). This implied that even when the GCP number was the same, different GCP 
patterns had varied check point errors, indicating that the GCP number should not be the only 
factor considered when determining the optimal GCP distribution. 

 

2.3.3. Relationship between GCP Configuration Type and Check Point Error 

    Because Figure 2.9 indicated that the both the mean horizontal error and the STDEV of 
the 3-GCP Group, 4-GCP Group, and 5-GCP Group were particularly high, the mean 
horizontal error of each GCP pattern in these groups are shown in Figure 2.10 to identify the 
specific GCP patterns with extremely high horizontal error. As shown in Figure 2.10, the 
horizontal error of Pattern 05 and Pattern 07 in the 3-GCP Group; Patterns 13–16 in the 4-
GCP Group; and Pattern 01, Pattern 03, and Pattern 04 in the 5-GCP Group was obviously 
larger than 1.0 m and was significantly different from the other patterns in the same group. 
Even with the same GCP number, there were certain distribution configurations of GCPs that 
might cause high calibration error, which was further proof that the number or density cannot 
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be the main factor to determine the optimal GCP placement. To discuss the characteristic of 
the GCP patterns that may cause large calibration error, the configuration of the GCP patterns 
with above-1.0 m-horizontal error are shown in Figure 2.11. 

 

Figure 2.10  Horizontal error of each GCP pattern in the 3-GCP Group, 4-GCP 
Group, and 5-GCP Group. 
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Figure 2.11 GCP patterns with above-1.0 m-horizontal error: (a) Pattern 05, 3-GCP 
Group; (b) Pattern 07, 3-GCP Group; (c) Pattern 13, 4-GCP Group; (d) Pattern 14, 4-
GCP Group; (e) Pattern 15, 4-GCP Group; (f) Pattern 16, 4-GCP Group; (g) Pattern 

01; 5-GCP Group; (h) Pattern 03, 5-GCP Group; (i) Pattern 04, 5-GCP Group. 
 

    As shown in Figure 2.11, the GCP patterns with above-1.0-horizontal error belonged to 
the diagonal type in the 3-GCP Group and to the line type in 4-GCP Group and 5-GCP Group. 
Both the diagonal and line types had the same aspect ratio characteristic (the rate of the 
longest side to the height, which is vertical to it) and was the highest within their group. As 
shown in Figure 2.11, the GCP configuration of these patterns was long and narrow, 
especially for those in the line type in the 4-GCP Group, which were nearly a straight line. 
As shown in Figure 2.10, all the GCP patterns in the 4-GCP Group had stable, high 
calibration accuracy, except for the four-line type patterns. This result suggested that the 
higher the aspect rate of the GCP configuration, the lower the calibration accuracy would be, 
and the GCP patterns forming a straight line had the worst calibration accuracy. 
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2.3.4. Describing the Calibration Ability of GCPs by GDI 

    As noted, when the available GCPs were comparatively less, such as the 3-GCP Group, 4-
GCP Group, and 5-GCP Group, the aspect rate was a useful factor when considering the 
optimal GCP placement. However, when the available GCPs were enough to form a well-
balanced polygon, such as the 6-GCP Group, the 8-GCP Group, and the above-10-GCP 
Group, the distribution configuration of GCPs would not form long and narrow shapes 
because there were enough polygon apexes. Although the shape of distribution configuration 
was no longer a main factor that affected the calibration accuracy, the horizontal error still 
varied for different GCP patterns. For example, as shown in Figure 2.9, the STDEV of the 
6-GCP Group was 0.116 m, which was almost equal to the average horizontal error (0.144 
m). This suggested that there was a factor other than the number and configuration shape of 
GCPs that affected the calibration accuracy. This factor is considered to be the area ratio 
surrounded by GCPs. 

    When the numbers of GCPs are the same, and the shapes of the GCP configuration have 
no distinguishing characteristics, the main difference between the GCP patterns is the 
surrounding area. However, when the surrounding area remains constant, the number of 
GCPs also results in varied calibration accuracy. To integrate the effect on calibration 
accuracy of these two factors, this study has suggested a new parameter to describe the 
calibration ability of GCP, which is the GDI. 

    As shown in Equation (2), the GDI is the product of the rate of the area surround by GCPs 
and the number of GCPs. The larger the GDI value, the larger the calibration accuracy of the 
GCPs. When the number of GCPs is low, surrounding a larger area with these GCPs may 
improve the accuracy. Similarly, even with enough GCPs, if the area surrounded by GCPs is 
extremely small, the accuracy will be low. A proof of this is that the line type had the lowest 
accuracy among both the 4-GCP Group and the 5-GCP Group. The relationship among 
horizontal error and GDI, the rate of the area surrounded by GCPs, and the number of GCPs 
are shown in Figure 2.12. Among these three factors describing the distribution of GCPs, 
GDI had the highest coefficient of determination (EMSPE = 7.75%), while both the area rate 
and the GCP number had large variation for estimating the horizontal error (RMSPE = 8.92% 
and 10.25%). This result showed that as the product by the area rate and the number of GCPs, 
GDI was more qualified than the rest for describing the calibration ability of GCPs. To 
provide a reference for optimal GCP distribution determination, the horizontal error was 
classified into five ranks, which are shown in Table 2.2 with the average GDI, area rate, and 
GCP number relevant to each of them. This reference table indicates that to guarantee an 
accuracy with a horizontal error < 10 cm, the GCP distribution containing seven GCPs and 
surrounding 70% of the subject area is recommended. The specific number or surrounding 
area rate of GCPs may fluctuate, but the GDI should be maintained at approximately five. 
With the decrease in GDI, the expected horizontal error becomes larger. When the value of 
GDI is <0.5, the horizontal is expected to be >0.5 m. 
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Figure 2.12 Relationship between the factors describing GCP distribution: (a) GDI; 
(b) Rate of area surrounded by GCPs; (c) Number of GCPs. 
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Table 2.2 Reference value of GDI, area rate, and number of GCPs of each rank of 
horizontal error. 

Rank No. Horizontal  
Error (m) GDI Area 

Percentage GCP Number 

10-cm-Rank 0.06 5.36 71% 7 

20-cm-Rank 0.148 2.33 47% 5 

30-cm-Rank 0.313 1.22 25% 5 

40-cm-Rank 0.689 0.654 20% 3 

50-cm-Rank 1.958 0.483 13% 4 
 

2.3.5. Relationship between the Position of Check Point Distance and Check Point Error 

    To provide practical proposal for more accurate UAV photogrammetry, this study has not 
only focused on the placement of GCPs, but also discussed the effect of the check point 
position on the photogrammetry accuracy. There are two factors relating to the position of 
the check points: the distance between the check points and the GCPs and the positional 
relation between check points and the area surrounded by GCPs. 

    In this study, the relationship between the horizontal error of the check points and these 
two factors were determined. Figure 2.13 shows the relationship between the horizontal 
check point error and the average distance between each check point and three nearest GCPs 
for all the twenty check points in each GCP pattern for every GCP group. Within every group, 
the correlation coefficient was less than 0.6, suggesting that there was no significant 
correlation between the horizontal error and the distance between GCPs and check points. 
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Figure 2.13 Relationship between the horizontal error and the distance between GCPs 
and the check point: (a) All patterns; (b) 3-GCP-Group; (c) 4-GCP-Group; (d) 5-GCP 
Group; (e) 6-GCP Group; (f) 8-GCP Group; (g) Above-10-GCP Group (**: p-value < 

0.01; *: 0.01 ≤ p-value < 0.05). 
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    Then, the positional relation between check points and the area surrounded by GCPs was 
discussed. The positional relation was classified into three types: outside (check point was 
outside the area surrounded by GCPs), inside (check point was inside the area surrounded by 
GCPs), and between (check point was located between two GCPs). Table 2.3 shows the 
average horizontal error of check points of these three types for each GCP group. Within 
each GCP group, the outside check point type had the highest horizontal error, the inside 
check point type had the lower horizontal error, and the between type had the lowest 
horizontal error. This suggested that GCPs had better calibration effect for the subjects that 
were located inside the area surrounded by them and had the highest calibration accuracy 
when the subject was between two GCPs. This result indicated that if there is a particular 
subject that needs high photographic accuracy, the optimal GCP placement is to situate the 
subject between two GCPs. If that is hard to achieve, then having the subject inside the area 
surrounded by GCPs may provide moderate accuracy. 

Table 2.3 Average horizontal error of check points of these three types for each GCP 
group (m). 

 

3-GCP 
Group 

4-GCP 
Group 

5-GCP 
Group 

6-GCP 
Group 

8-GCP 
Group 

Above-10-GCP 
Group 

Outside 0.873 0.769 0.449 0.218 0.074 0.035 

Inside 0.728 0.125 0.128 0.083 0.054 0.031 

Between 0.247 0.118 0.060 0.062 0.037 0.027 

 

2.4 Discussion 

    UAV remote sensing is not just an engineering science, it is also a tool for the researchers 
and common users from all kinds of fields and occupations, such as sociology, environmental 
assessment, and agriculture. If the basic accuracy verification is conducted without 
considering the actual situation these non-professional users are facing, the existence of UAV 
remote sensing will be meaningless outside the academic world. 

    Many studies have discussed the optimal GCP distribution for UAV photogrammetry. 
However, when it comes to survey sites in open land or rural areas, the subject field is 
sometimes difficult or impossible for surveyors to enter due to the variety of environments 
and may be why photogrammetry by UAV is needed. In these cases, the theoretical optimal 
GCP distribution with GCPs inside the survey field cannot be put to practical use. In fact, 
many researchers or users of UAV worry about the photogrammetric accuracy when they 
cannot place GCPs inside the field. Sometimes, they have to put the GCPs along the road 
because it is the only place that is possible to set the anti-aircraft signals, but they do not 



 

33 
 

know how much this special GCP configuration can correct the position information of the 
whole field. With these doubts, they cannot fully trust the accuracy of the photogrammetric 
production, and in worst cases, the whole UAV survey may be in vain. Furthermore, even if 
they managed to set some GCPs around the field, they have doubts such as if the GCPs can 
correct the position information of the subjects from far away. These researchers and users 
need reference data to tell them how to obtain the optimal GCP calibration effect even 
without the internal GCPs, and if they must place the GCPs in a special configuration such 
as a straight line or a little triangle, on what level the photogrammetric error will be. With 
this kind of reference, the UAV photogrammetry results can be clarified and start 
contributing to all fields of study. This is exactly the motivation of this study. 

    In this study, 88 GCP distribution patterns with different configurations using three, four, 
five, six, eight, ten, and twelve GCPs were applied for the UAV photographs of a 12 ha field 
to discuss the optimal GCP distribution an inaccessible field. 

    The results show that when the GCP number was less than six, the shape of GCP 
configuration was a main factor affecting the calibration accuracy of the GCPs. Specifically, 
the higher the aspect ratio of the GCP configuration, the lower the calibration accuracy. As 
an extreme case, when four GCP were used, the GCP configuration with all GCPs forming a 
straight line had very high horizontal error (2.099 m on average), which was over seven times 
that of the other configurations also using four GCPs (0.285 m on average). The reason the 
straight-line type of GCP configuration was discussed in this study is that it is a case that 
often occurs in UAV surveys. When the whole subject area is difficult to enter or there is no 
significant object on the ground inside the field, such as a forest, grassland, or lake, the most 
convenient method is to establish GCPs along the road near the field, because there are many 
significant objects such as signals and cracks on the road, and it is easy to install the anti-
aircraft signals because the road is flat and has no obstacles on it. However, based on the 
result of this study, placing GCPs along the road will result in a low calibration accuracy 
because the GCPs will form a straight line. In such cases, it is better to arrange the GCPs into 
a well-balanced triangle or rectangle with low aspect ratio, such as the corner, diagonal, half-
side, or surrounding type shown in Figure 2.7. If the field is totally inaccessible, setting the 
GCPs in the corner to form a right triangle will obtain better accuracy than setting the GCPs 
along the road. It is the same when only three GCPs are used. In the 3-GCP Group, the corner 
type had much better accuracy (average horizontal error = 0.526 m) than the diagonal type 
(average horizontal error = 1.198 m), because the aspect ratio of the diagonal type was higher 
than the corner type. When only three GCPs are available, putting them as an equilateral 
triangle or a right triangle will obtain better accuracy then an obtuse triangle (Figure 2.14). 
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Figure 2.14 GCP patterns and horizontal error (Ehorizontal) for the 3-GCP Group.  
 

    When there are more than eight available GCPs, the shape of the GCP configuration is no 
longer a main factor affecting the GCP calibration accuracy because the configurations 
formed by more than six vertices tend to have no significant aspect ratio value. However, 
different GCP patterns still have variable accuracy. The factor that affects the GCP 
calibration accuracy when more than six GCPs are used is the rate of the area surrounded by 
GCPs. However, the area rate cannot be the only factor explaining the accuracy, because 
when the area rate stays consistent, the more GCPs used, the higher the accuracy. To integrate 
these two factors, this study proposed the GDI (the product of area rate and GCP quantity) 
to describe the ability of GCP calibration when the GCP number is more than six. According 
to the results, GDI was better at describing the horizontal checkpoint error and thus the GCP 
calibration accuracy than the area rate and GCP quantity. When surveyors have doubts about 
the error level of their UAV photogrammetric products, they can calculate the GDI and find 
the corresponding error value shown in Table 2.3. Similarly, if they want to achieve a certain 
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level of accuracy and have doubts about what kind of GCP distribution is suitable, they can 
also calculate the area rate the GCPs should surround using the GCP number. Furthermore, 
when evaluating former studies or reports using UAV photogrammetry with certain GCP 
distributions, readers can gain insight into the error level using this reference table. This 
provides a standard to evaluate the accuracy of UAV photogrammetric results, which have 
often been subjective. 

    The last factor that affected the GCP calibration accuracy was the position of the 
measurement subjects. Normally, it is considered that the farther the subject is from the GCPs, 
the lower the accuracy will be. However, the results showed that distance between subjects 
and GCPs was not the main factor affecting the accuracy because the correlation between the 
GCP-check point distance and horizontal error was low (R = 0.45). Instead of the distance 
between the subjects and GCPs, the positional relation is more impactful on the GCP 
calibration accuracy. Locating the subject inside the area that is surrounded by GCPs will 
efficiently increase the photogrammetric accuracy. However, if the subject is located between 
two GCPs, it will obtain the best accuracy. When a certain object instead of the whole survey 
land needs to be measured accurately, surveyors tend to surround the object with GCPs. 
Based on the results of this study, this placement of GCPs will not provide the best accuracy 
and placing GCPs on two sides of the object of interest is preferred. 

    Recently, UAV remote sensing technology has been utilized for resource monitoring in 
multidisciplinary fields, such as agricultural and land resources, fisheries resources, forests, 
agroforestry, ecosystem services, etc. It still has the potential to contribute to the 
transdisciplinary processes of collaborative monitoring of various natural resources with 
societal stakeholders due to its high-cost performance ratio, high mobility, high image 
resolution, and user friendliness without many difficulties in operations. However, the UAV 
survey with high precision is still limited in the field of information engineering and is facing 
difficulty in being popularized in other science fields, including transdisciplinary knowledge 
co-creations. This is due to the uncertain survey procedure caused by differences between 
various study sites. The cross-cutting between the engineering fields that focus on improving 
remote sensing precision and the other fields which use remote sensing technology as an 
approach of knowledge creation is necessary. The current study has not only introduced the 
common methodology of using GCPs, which is a crucial factor to improve UAV survey 
precision, but also created a standard of settling GCPs properly in inaccessible areas, which 
helps diverse users of UAV photogrammetry to obtain more reliable UAV remote sensing 
data at the different study sites. Furthermore, through the effective utilization of high-
precision and high-resolution remote sensing data in inaccessible areas such as forests, 
grasslands, water bodies, coastal areas, and protected areas, it is hopeful to achieve better-
integrated management of these areas through transdisciplinary collaborations with 
researchers of diverse disciplines and societal stakeholders. The results and proposals made 
in this study are useful for cross-cutting between the UAV remote sensing engineering and 
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other practical science fields, substantially contributing to sustainable community 
development based on transdisciplinary integration of agricultural and other natural resource 
management systems by popularizing the precise UAV photogrammetry.  

 

4.5 Conclusions of this chapter 

    This study was conducted using UAV photography and RTK-GNSS equipment at an 
experimental field (12 ha) located in Obihiro City, Hokkaido, Japan on 24 August 2021. The 
calibration ability of 88 GCP pattern repetitions was verified to discuss the optimal method 
to determine the GCP distribution. 

    Results show that when the available GCPs are less than six, the aspect ratio of the GCP 
configuration is the main factor affecting the accuracy. A lower aspect ratio is recommended 
to achieve better accuracy. When there are more than six available GCPs, the GDI is the 
proper factor to describe the GCP calibration ability. The higher the GDI, the higher the 
accuracy. 

    This study also provided a table of reference data to predict the error value with GDI. With 
this indicator, the georeferencing accuracy is predictable with the GCP number and GCP area. 
Moreover, according to the concept of GDI, the optimal distribution of GCPs can reduce the 
necessary number of GCPs to achieve a certain accuracy, and by which improve the 
efficiency of UAV photogrammetric surveys. In additional, further study on applying the 
GDI at challenging terrains such as a mountainous area is required. 

    Finally, referring to the positional relation between the object and GCPs, this study 
indicated that setting GCPs on two sides of an object may improve the calibration effect more 
than setting GCPs around it when a certain object needs to be measured. 

    These results and suggestions are expected to help researchers and societal stakeholders 
employing UAV photogrammetry obtain more trustworthy data, which can contribute to their 
research and practices. By providing one improvement for natural resource users and 
managers to perform accurate monitoring under challenging conditions, the results of this 
study can hopefully help improve monitoring accuracy at inter- and transdisciplinary studies 
of sociology, forestry, agriculture, and engineering surveys, which contributes to the 
development of an integrated resource monitoring system. 
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Chapter 3 Monitoring of Crop Plant Height Based on DSM Data Obtained by Small 
UAV Considering the Difference of Plant Shapes  

 

3.1 Introduction  

    Plant Height is an indicator that is strongly related to the resistance of crops to overthrow, 
biomass, and yield, and reasonable grass height is a guarantee of crop yield [1]. By adding 
stem thickness and Normalized Difference Vegetation Index (NDVI) to grass height, the 
biomass of a crop can be estimated and further yield can be predicted [2]. In addition, 
increasing grass height under the assumption that it does not cause overthrow can increase 
yield [3]. Besides, grass height of crops can reflect their growing environment, and irrigation 
and fertilization can be planned rationally by monitoring grass height [4]. Therefore, rapid 
and accurate monitoring of crop grass height across the field is important for understanding 
crop growth conditions. 

    Many research results have been reported on crop growth monitoring worldwide. The main 
methods used to obtain crop height information include ground surveying, multispectral 
analysis, and laser surveying. Ground surveying requires the surveyor to enter the growing 
area of the crop, which inevitably causes damage to the crop. It is also time-consuming and 
difficult to obtain grass height information for the entire field, since only surveyed values for 
specific locations can be obtained. Grass height estimation using multispectral data generally 
uses data acquired by satellites, which has the disadvantages of a long acquisition period and 
low ground resolution, making it difficult to obtain immediate grass height information. In 
addition, the accuracy of grass height estimation using multispectral data is not stable because 
the spectral reflectance of crops differs at each growth stage. Remote sensing by laser 
surveying has high measurement accuracy, especially for forest tree height, and is an 
effective tool for measuring tree height and grass height of crops, but the equipment is very 
expensive, making it difficult to spread to ordinary farmers [5]. Therefore, UAV is thought 
to be a promising method for monitoring grass height as a remote sensing technology that 
can observe the entire field at low altitude and is inexpensive. 

 SfM technology is commonly used to create wide-area scale spatial information using a 
large number (tens to hundreds) of aerial images taken by UAVs. The process generates a 
three-dimensional point cloud by generating a three-dimensional point cloud, which is then 
used to generate a three-dimensional model, orthomosaic, and numerical DSM [6]. 

 In 2013, Bendig et al. used a small rotary-wing UAV (MK-Oktokoper, HI System GmbH) 
flying at an altitude of 30 m and using a woodpile as a GCP, generated a DSM using image 
data acquired by an RGB sensor mounted on the UAV, and calculated the difference between 
the DSM for a level ground condition and proposed a method for estimating the height of 
barley grass by calculating the difference between the DSM and the DTM. The results were 
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compared with measured values on the ground, and an estimation accuracy of R² = 0.69 was 
obtained with a coefficient of determination [7,8].  

    In 2014, the same researcher estimated barley biomass using the DSM estimate of grass 
height and obtained an accuracy of R²=0.71. In 2015, the same researcher modeled biomass 
by combining DSM with vegetation indices using UAVs and obtained an accuracy of R² = 
0.80~0.82.  

    Zarco-Tejada et al. (2014) used aerial images from an RGB digital camera mounted on a 
fixed-wing UAV to construct an orthomosaic and a DSM. DSM was constructed to estimate 
olive tree height. The results were compared with actual measurements and showed a 
coefficient of determination of R² = 0.83, RMSE = 1.16 m to 4.38 m, and an accuracy of R-
RMSE = 11.5% [9]. Teng et al. (2019) flew a UAV (S100, DJI) to 30 m to verify the accuracy 
of PH by DSM and obtained an estimation accuracy of RMSE = 3.3 cm [10]. 

 Although many validation studies on grass height estimation based on UAV aerial 
photography data have been conducted around the world in recent years, few studies have 
examined crops with different stomatal morphologies at the same time, in the same region, 
and under the same flight conditions. In particular, there have been no studies comparing 
monocotyledonous and dicotyledonous plants, which differ greatly in leaf morphology and 
cultivation methods, under the same conditions. For this reason, this study conducted UAV 
aerial photography and ground-based growth surveys of three crops with distinctive stomatal 
morphology: Perilla (dicotyledonous), Potato (dicotyledonous), Reed (monocotyledonous), 
Oat (monocotyledonous) and barley (monocotyledonous).  

 When DSM is used to estimate grass height of crops, the differential DSM value is 
generally lower than the measured grass height; in UAV-based studies, the ground resolution 
is often a few centimeters, and a pixel in an aerial image represents a few square centimeters 
of ground objects. On the other hand, the ground resolution of DSM is larger than that of 
aerial imagery. This means that the DSM generation process is likely to include not only the 
top of the crop, but also the lower stems, leaves, or ground. In contrast, in actual 
measurements, it is common to measure the maximum grass height within a specific area. As 
a result, the DSM measures more detail than the actual measurement, resulting in a lower 
differential DSM value than the actual measurement.  

    To address this problem, it is desirable to obtain measured values in a manner more similar 
to the process of DSM generation than the conventional method of measuring maximum 
grass height. Many studies have randomly selected measured locations in the plots under 
study and compared them to the average of the differential DSMs for the entire plot. Not only 
is it difficult to represent the average grass height of the entire plot at those randomly selected 
locations, but it is also unstable depending on the individual surveyor. Therefore, it is 
desirable to extract differential DSMs at locations that match the actual measurement 
locations as much as possible.  
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    Furthermore, the method of installing wooden stakes on the ground and using them as 
GCPs is more efficient than installing GCPs and measuring location information at each 
survey, but the tops of the stakes are a certain distance away from the ground surface, which 
may cause errors when correcting the DSM as a GCP.  

   To remedy these problems observed in previous studies, this study used a homemade grass 
height measuring device, fixed the survey site using a marker pole and orthomosaic, buried 
the woodpile in the ground, and placed an aerial marker on top of it for use as a GCP. The 
objective of this study was to improve the accuracy of DSM data and measured data using 
this improved survey method, and to evaluate the accuracy of grass height estimation using 
small UAV aerial images with a view to the stem and leaf morphology of the crop, using 
multiple crops as survey targets.  

 

3.2 Methodology 

3.2.1 Study site  

    The research plot is located in Obihiro City, Hokkaido, Japan, at longitude 143.1713°E-
143.1738°N, latitude 42.8694°N-42.8678°N, and elevation about 77 m (Figure 3.1). 
Hokkaido is the second largest prefecture in the Japanese archipelago (77,983.90 km²), the 
largest and northernmost prefecture in Japan, and the largest food production base. The 
Tokachi Plain, where Obihiro is located, is on the Pacific Ocean side of eastern Hokkaido, 
with the Hidaka Mountains to the west, the Daisetsu Mountains to the north, and the Pacific 
Ocean to the south and east. The prevailing winds are northwesterly in winter and 
southeasterly in summer. In spring and fall, the winds blow differently during the transition 
periods from winter to summer and from summer to winter, respectively. In summer, the 
Pacific high pressure system in the south of Japan extends to the north, and the southeast 
monsoon brings hot and humid air to the Tokachi Plain, making it hotter. However, 
depending on the city, the Ogasawara high is weak and an anticyclone with its center in the 
Sea of Okhotsk appears frequently. This high-pressure system is the base of a decree base, 
and easterly winds called "Yamase" blow along the Pacific coast. This wind brings summer 
and exceptional weather to Tokachi. From an agricultural meteorological standpoint, this 
difference in weather is the main reason why the Tokachi region is a field crop zone. 
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Figure 3.1 Location of Study Site 
 

 Tokachi agriculture is one of the most specialized field crop farming areas in Hokkaido, 
as well as in Japan, and there are also some combined field and dairy farming operations. In 
terms of regions, field crops are predominant in the central region centering on Obihiro City, 
while dairy and livestock farming are the main businesses in the mountainous and coastal 
regions. The large-scale, mechanized, and highly productive agriculture has resulted in 39 ha 
of arable land per farm household, 22 times the national average, and the percentage of 
farmers by size of arable land is as follows: 20-30 ha (24%), 30-50 ha (39%), 50-100 ha 
(39%), and 20-30 ha (24%). The percentage of farmers by the size of cultivated land is 24% 
for 20-30 ha, 39% for 30-50 ha, and 13% for 50-100 ha. The ratio of full-time farmers to 
sales farmers (farmers with arable land of 30 ha or more or farm product sales of 500,000 ha 
or more) is 73%, which is overwhelmingly higher than the national figure of 23%. 
Agricultural output accounts for 24% of Hokkaido's total, with the arable sector accounting 
for 56% of output and the livestock sector 44%. The main crops in the arable sector are wheat, 
buckwheat, sugar beets, soybeans, sweet corn, potatoes, and radishes. 

    The experimental field is rectangular in shape (about 2.8 ha in area), 180 m east-west and 
160 m north-south, and is surrounded by a birch windbreak. In the survey year (2019), the 
entire field was divided into 22 cropping zones (henceforth referred to as fields), including 
pepo squash, peanut, ricinus, black sesame, sesame, wheat, Italian barley, oyster, sunflower, 
soybean, barley, onion, rye, wild oats, embak, timothy, reed cana, and Nineteen experimental 
crops were cultivated (Figure 2). This paper describes the results of a survey of five of the 
cultivated crops with distinctive stomatal morphology: Perilla, Potato, Reed, Oat and Barley. 
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3.2.2 UAV surveys  

    Prior to conducting the UAV aerial survey, ground control points (GCPs) were established 
at seven locations throughout the field to measure location information. The GCPs were 
surveyed on May 28, 2019, from 3:00 p.m. to 4:00 p.m. using the RTK satellite positioning 
system (Real The Hiper V), and its positioning accuracy during static positioning mode is 10 
mm + 0.5 ppm in the horizontal direction and 15 mm + 1.0 ppm in the vertical direction. The 
coordinate system used was the Japan Geodetic System 2011. An aerial marker (black and 
white, 40 cm × 40 m) was placed over the GCPs before each aerial photography to make 
the GCPs easier to identify. 

 Immediately prior to conducting the aerial photography survey, the locations and heights 
of utility poles, trees, and construction objects around the surveyed area were carefully 
considered to ensure that they would not obstruct the UAV flight. Plant stems and leaves and 
sand blown up by the Provera's rotation could cause dirt and damage to the aircraft, so a flat 
and clean area was selected for the UAV takeoff and landing sites, and a heliport was 
established. 

A small rotary-wing UAV (Phantom4 Pro, DJI) was used for aerial photography. The aircraft 
weighs 1375 g (including the battery and Provera), has a diagonal dimension of 350 mm (not 
including the propeller), a maximum flight speed of 50 km/h in GPS mode, an operational 
altitude limit (above sea level) of 6000 m, a maximum wind resistance of 10 m/s, a maximum 
flight time of approximately 30 minutes, an operating environment The maximum flight time 
is about 30 minutes, the operating environment temperature is 0 to 40°, and the satellite 
positioning system is GPS/GNSS. The camera lens has a field of view of 84 m and a 
maximum wind resistance of 10 m/s. The maximum flight time is approximately 30 minutes. 
The camera lens on the aircraft has an 84° field of view, 8.8mm/24mm, f/2.8 to f/11, and an 
autofocus function. The image size of the aerial data was 5472 x 3648 pixels and was saved 
as JPEG data on a micro SD card. 

 Aerial photography was conducted using Pix4D Capture (Pix4D, Inc.), a flight planning 
application dedicated to UAVs, with the following parameters: Above Ground Height (AGB) 
of 50 m, camera angle of 70° (from the horizontal), and overlap and side wrap rates of 80%. 
parameters. The flight path was Double Grid, the flight range was approximately 210 x 210 
m, the total route length was approximately 6500 m, the flight time was approximately 32 
minutes, the stability speed was approximately 4.7 m/s, and the number of satellite captures 
was 12 to 16. aerial photography was conducted under the same conditions each time. A list 
of survey dates is shown in Table 2-2. 
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3.2.3 Ground surveys  

    Each ground survey was conducted immediately after the aerial photography or on the 
following day in the fields of the subject crops. Four to ten measurement points (10 in the 
barley field, 4 in the wheat field, and 8 in the sorghum field) were placed in the field of each 
crop to be surveyed, and the locations were marked with a gardening pole (150 cm high and 
0.5 cm in diameter) with a pink marking dope (30 cm long).  

    A self-made device for measuring grass height was used. The measuring device consists 
of a plastic pole 150 cm long and 28 cm² in cross-sectional area and a thin flat plate 0.2 cm 
thick and 200 cm² in area (20 cm long and 10 cm wide). A tape measure is applied to the 
surface of the plus pole. The flat plate can slide up and down on the pole and rotate 
horizontally around the pole. When measuring, the measuring device is placed vertically at 
the measurement point and the flat plate is slid from the top of the measuring device to the 
top of the crop. The height of the position of the flat plate was recorded when the crop stems 
and leaves were slightly deformed and the most stems and leaves were in contact with the 
bottom of the flat plate. The plate is rotated 90° horizontally and surveyed in four different 
directions with the measurement point at the center. The average of the four measurements 
was taken as the measured value for this measurement point.  

 

3.2.4 Data analysis  

    An orthomosaic (1.6 cm ground resolution) corrected for location with GCP was 
introduced in ArcGIS Pro, marking tape was identified to mark the actual measurement point, 
and vector data (shape file) of the point was created at that location. Since grass height within 
a radius of 20 cm centered on the measured point was surveyed in the ground survey, a buffer 
zone of a 40 cm radius circular area centered on the created point shape file was created, 
taking into consideration the slight deviation between the DSM and orthomosaic and the error 
due to the height of the measured pole. The buffer zone was then created in ArcGIS Pro. The 
maximum differential DSM value was used to estimate grass height based on the results of 
[8].  

 There is a certain difference between the differential DSM values from UAV aerial images 
and the measured grass height of the crop, and the extent of this difference is strongly 
influenced by the stem and leaf morphology of the crop. Therefore, it is necessary to create 
a linear regression equation between the differential DSM values and the measured values in 
order to estimate grass height using DSM from UAV aerial photography images. 70% of the 
survey data was randomly selected as training data and the remaining 30% was used as test 
data using the scikit-learn module of Python 3.7. The remaining 30% was used as test data. 
Using the training data, a linear regression estimating equation was created using the least 
squares method, and the goodness of fit was evaluated using the coefficient of determination 
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R² and the root mean squared error RMSE (Root Mean Squared Error). The accuracy of the 
estimation equation when applied to actual grass height estimation was also verified using 
test data. 

    In fields with large crop stubble gaps, the ground surface elevation information in the aerial 
image causes the DSM to be lower than the actual crop height. Therefore, it is expected that 
the accuracy of grass height estimation based on differential DSM values will be improved 
by taking into account the vegetation coverage inside the field. The total number of pixels in 
the field area (P_total) is then calculated in the Histogram window. Next, the Color Range 
function extracts non-green pixels and transfers them to a new layer. Finally, the remaining 
green pixels (P_green) were counted and their percentage of the total pixels was used as the 
vegetation coverage of the field.  

 

3.3 Results and Discussion 

3.3.1 Accuracy of estimated plant height for Perilla  

    Figure 3.2. (a), (b) shows the time-series change in plant height and the relationship 
between the estimated plant height and the measured plant height in the Perilla field. In the 
Perilla field, the degree of fit between the estimated plant height and the measured plant 
height is very high (R2 = 0.9721) from the foliage elongation stage to just before flowering. 
rice field. In recent years, Perilla is a crop that has been attracting attention for its health-
enhancing effects. The plant grows as tall as 60cm to 200m, and many branches develop in 
the leaf axil of the stem. It has strong fertilizing ability and grows vigorously without 
additional fertilizing or flooding. In order to increase the number of seeds, it is necessary to 
prevent drooping and pinching. It is thought that the growth characteristics of offspring 
greatly improved the accuracy of plant height estimation by DSM. From this result, it was 
found that DSM with 10 cm ground resolution can be applied to grasp the plant height of 
crops with vigorous growth and tight internodes such as Perilla. 
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Figure 3.2 (a) Time series of plant height of Perilla 

  

Figure 3.3 (b) Relationship between the estimated plant height by DSM and measured 
plan height of Perilla 

 

3.3.2 Accuracy of estimated plant height for Potato  

    Figure 3.4 (a), (b) show changes in plant height over time in potato fields and the 
relationship between estimated plant height and measured plant height. In the potato field, a 
strong correlation (R2=0.82**) was observed between the estimated plant height and the 
measured plant height from the growing season to harvest. Also, the RMSE was 13.57 cm, 
which was smaller than that of grass crops. Mature potato leaves are pinnately compound. 
Such leaf discs usually develop from each node of the stem with two-fifths phyllo taxis, have 
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long petioles, and 7 to 9 elliptical leaflets are attached to the long petioles to form a compound 
leaf. In addition, secondary differentiated lobules are attached between these large lobules. 
Such a compound leaf structure is considered to have improved the accuracy of plant height 
estimation by DSM. From this result, it was found that DSM with 10cm ground resolution 
can be used for estimating the plant height of crops with pinnately compound leaves such as 
potatoes after the growing season. 

 

Figure 3.4 (a) Time series of plant height of Potato 
 

  

Figure 3.4 (b) Relationship between the estimated plant height by DSM and measured 
plan height of Potato 
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3.3.3 Accuracy of estimated plant height for Reed  

    Figure 3.5 (a) and (b) show changes in plant height over time and the relationship between 
the estimated plant height and the measured plant height. In pastures, the degree of fitness 
between the estimated plant height and the measured plant height was very high (R2 = 0.97**) 
from the second growing season to the third growing season. The RMSE was also relatively 
low, though stable at 11.70 cm. Concerning the shape of foliage and foliage, grass is cooked 
with oat, the culm is erect, and the leaves are alternate with broad linear sharp tops. This 
cultivation method is considered to have improved the accuracy of plant height estimation 
by DSM. From this, it was found that the DSM with a resolution of 10 cm or more is suitable 
for estimating the height of crowded pasture grass from the beginning of growth to the time 
of mowing. In addition, it was found that the error in the estimated plant height for pasture 
grasses with broad-line sharp tops, 10-35 cm in length and 6-18 mm in width, was always 
stabilized at about 10 cm. 

 

 

Figure 3.5 (a) Time series of plant height of Potato 
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Figure 3.5 (b) Relationship between the estimated plant height by DSM  
and measured plan height of Potato 

 

3.3.4 Accuracy of estimated plant height for Oat 

    Figures 3.6 (a) and 3(b) show changes in plant height over time in an oat field and the 
relationship between plant height estimated by differential DSM and measured plant height. 
In the oat field, a very strong correlation (R = 0.09) was observed between the estimated plant 
height and the measured plant height during the entire survey period including the heading 
stage. However, the RMSE was relatively large at 13.15 cm. Oats are collectively called 
wheat together with grains such as wheat and barley, but unlike wheat and barley, the panicles 
do not stand upright on the culm, but consist of small panicles that sparsely droop downward. 
It does not exceed the size of the leaves (Figure 3.4). In addition, it has the largest spikelet 
(approximately 3 cm) in the Poaceae family, so even if the inflorescence exceeds the culm, 
it can be recognized in an aerial image. However, similar to the wheat, the upright culms are 
fascinated and the gap between leaves is relatively large, so the RMSE value is relatively 
large. From this, it was found that the DSM with a ground resolution of 10 cm is effective 
for estimating the plant height of gramineous cereals that cannot grow pampas. 
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Figure 3.6 (a) Time series of plant height of Oat 
 

  

Figure 3.6 (b) Relationship between the estimated plant height by DSM and measured 
plan height of Oat 
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3.3.5 Accuracy of estimated plant height for Barley  

    Figure 3.7 (a) and (b) show the time-series changes in the plant height of the barley field 
and the relationship between the estimated plant height and the measured plant height based 
on the difference DSM. It greatly exceeded the measured plant height. The reason for this is 
thought to be that the barley had emerged during this period. Like wheat, barley produces 
dense panicles on the culm length at the time of ear emergence, but the tip of the panicle is 
characterized by a long erect pampas grass, and the inflorescence is covered with countless 
pampas grass. Such pampas grass is thought to be the driving force behind the estimated plant 
height being lower than the measured plant height when the ground resolution of DSM is 10 
cm. From July 3rd, the barley field suffered severe lodging due to heavy rain, and the lodging 
condition continued until harvest. Due to this phenomenon, the estimated plant height 
became closer to the measured plant height. Figure 3.8 (a) and (b) show the relationship 
between the estimated plant height before and after lodging and the measured plant height. 
From this result, it was found that the DSM with a ground resolution of 10 cm is not suitable 
for estimating the plant height of crops with pampas grass on the culm length such as barley. 

 

 

Figure 3.7 (a) Time series of plant height of Barley 
 



 

54 
 

  

Figure 3.7 (b) Relationship between the estimated plant height by DSM and measured 
plant height of Barley 

 

 

            (a)                                                                               (b) 

Figure 3.8 Relationship between the estimated plant height by DSM and  
measured plant height of Barley during different growing period:  

(a) From 2019/6/19 to 6/26; (b) From 2019/7/3 to 8/4 
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3.3.6 Correction of estimated plant height by canopy cover 

    The Canopy Cover value and the dates of the UAV photographs by which the Canopy 
Cover was calculated are shown in Table 1. In the barley field, the Canopy Cover increased 
pronouncedly after the lodging from 88.9% (June 26th) to 97.1% (July 3rd), while in the 
Perilla field, the Canopy Cover increased gradually from 90.4% (July 31th) to 100.0% 
(September 3rd). The relationship between the measured PH and the estimated PH corrected 
by Canopy Cover is shown in Figure 3.9. In the barley field, the performance of the estimated 
PH after correction by Canopy Cover (R2=0.57, RMSE=20.9 cm) was shown to be more 
accurate than before correction. In the Perilla field, the estimation accuracy was slightly 
increased (R2=0.97, RMSE=7.9 cm) after it was corrected by Canopy Cover. 

Table 1 Canopy Cover during survey period 

(a) Barley Field 

Date June 19 June 26 July 3 July 10 July 17 July 24 July 31 

CC 87.3% 88.9% 97.1% 98.8% 98.8% 99.2% 95.5% 

(b) Perilla Field 

Date July 31 August 7 August 14 August 21 August 29 September 3  

CC 87.3% 88.9% 97.1% 98.8% 98.8% 99.2%  

 

 

Figure 3.9 Relationship between measured and estimated PH  
corrected by Canopy Cover 
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3.4 Conclusions of this chapter 

    In this study, the accuracy of estimating PH based on DSM data generated from UAV 
photographs for three crops with different plant shapes were compared. Although the 
estimation accuracy for barley was low during the whole survey period, it increased after the 
elimination of the effect of the spikes. For both barley and oat plants, the estimated PH were 
lower than the measured PH, because the DSM provided the average height of all factors 
within one pixel. However, the estimated PH for perilla was more accurate than the other 
subjects and surpassed the measured PH late in the growth stage due to its luxuriant plant 
shape. Future study is expected to discuss and verify this difference of estimation 
characteristic between monocotyledons and dicotyledons. Furthermore, VC was proved to 
be helpful to increase the estimation accuracy of PH for both barley and perilla plant.  
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Chapter 4 Comparison of DSM and 3d Point Cloud by Small UAV Imagery on 
Estimating Plant Height and Biomass Volume 

 

4.1 Introduction  

Proper planting of biomass fuel plant has become one of the main challenges of carbon 
neutral. In recent years, attention has been paid to the use of pasture grass as biofuel. 
Gramineae grass has a vigorous regenerative power and can be cut multiple times a year. 
Some species can be continuously cultivated for more than five years [1]. Furthermore, 
pasture grasses can adapt to most kinds of ground surface environment and provide high 
yields where the edible crops can hardly grow, which avoids the competition between biofuel 
and food production.  

At the site of grassland management, plant height and biomass production monitoring 
during the growing stage is one of the most important measurements. In the last decade, with 
the advancement in new platforms such as unmanned aerial vehicles (UAVs), methods based 
on remote sensing for biomass production estimation are gathering popularity. As a result of 
the fusion of UAV remote sensing and digital photogrammetry technology, a flexible and 
automatic approach of progressing aerial imagery has been developed, which is known as the 
structure from motion (SfM) technology. Based on the multiple overlapping images, 
characteristic feature points are detected of which the three-dimensional (3D) coordinated 
are reconstructed during the bundle adjustment progress afterwards. After the bundle 
adjustment, a detailed scene geometry made by a sparse point cloud is built and all pixels are 
used in this step to reconstruct finer scene details. Based on this sparse point cloud, the dense 
point cloud, orthomosaic and the digital surface model (DSM) are exported. As an 
intermediate production to construct the DSM, the characteristic of the dense point cloud is 
that it is not filtered, meaning that it contains all the outliers and noise point [2]. On the other 
hand, DSM is exported in a common image format such as *.tif with a particular coordinate 
system, with the pixel size of more than one centimeter, meaning that one pixel represents 
the mean value of all 3D points inside it. Furthermore, filters such as noise filter and surface 
smoothing filter are applied to the DSM, which make the DSM unable to represent the detail 
of the small features on the ground precisely, such as the leaves of plants [3].  

The difference between the DSMs of a planted field and the digital terrain model (DTM) 
has been referred to crop surface model (CSM) [4]. Ever since Bendig et al. firstly adopted 
SfM-MVS to derive plant height (PH) and above-ground biomass using CSMs in 2013, this 
method has become the most explored and verified approach to simulate the structure of 
crops all over the world. Most studies showed that the plant height estimated by CSMs tend 
to be lower than the plant height measured on the ground, because of the average and smooth 
surface of CSMs  [5]. Based on this background, there is thought to be a possibility that point 
clouds can represent the plant height of crops more accurately than CSMs.  

However, there is no study yet discussing the difference at the performance on 
estimating plant height and above-ground biomass volume of pasture grass. The objectives 
of this study are 1) to compare the estimation results of plant height and biomass volume 
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obtained by point clouds and CSMs respectively, and 2) discuss the characteristics of each 
of them on representing three-dimensional structure of the crop.  
 

4.2 Methodology 

4.2.1 Data collection 

The study site was a grass field inside the experimental field of Obihiro University of 
Agriculture and Veterinary Medicine, Obihiro City, Hokkaido, Japan. The specie of the 
pasture grass was reed canary grass. The surveys by UAV were conducted weekly from 31st 
May to 3rd September 2019 (15 times in total), with Phantom 4 Pro (DJI). Before the UAV 
flights, seven ground control points (GCPs), of which position information was measured 
using RTK-GNSS (HiperV, TOPCON), were settled all over the experimental field. The 
flights were carried out automatically by Pix4D Capture (Pix4D). During each flight, the 
flying height was 50 m above ground. Both the top-overlap and the side-overlap rate were 
80%. The ground sampling distance (GSD) of the raw aerial imagery was 1.32 cm. Ground 
surveys in order to obtain the plant height of the grass were conducted from 17th July to 3rd 
September (totally 8 times), on the same dates as the UAV surveys. During each time of the 
ground surveys, six measuring points were settled all around the grass field and marked with 
marking tapes which could be seen at the aerial imagery. Sampling of these six measure 
points was made during every time of the ground survey. A self-made plant height measure 
was used to obtain the optimal height value of the grasses. According to [5], “the PHCSM 
represents the mean plant height of all pixels in a pixel. As a result, not only the top of the 
plant, for example the ears, is measured, but also the lower parts, like the leaves. 
Consequently, the detail of PHCSM is higher than PHM, because PHCSM contains more than 
on pixel per plant and, the method of the PHM reference measurements in the field should be 
discussed.” Based on this opinion, which is most reasonable, the method of method to 
measure plant height with tape measure or staff ruler, which has been used in many studies, 
can defiantly not obtain the obtain value standing for the plant height of a certain the field. 
In this research, a self-made plant height measure was used to obtain the reference plant 
height. A sliceable plastic plate (10 cm × 20 cm) was used to determine the proper height of 
the grass canopy. When measuring, the plate was sliced down from above, until every parts 
of its bottom was touched by the grass leaves. The leaves should be naturally curved instead 
of being forced bending when the plat has stopped. This method can not only help determine 
the optimal canopy position, but also help the observer to read the scale efficiently. The 
height of the grass is usually lower than one meter, meaning that the investigator has to squat 
down or gravel down to the ground in order to look at the canopy from a horizontal direction.  
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4.2.2 Data analysis 

Figure 4.1 shows the workflow of the data processing. The RGB imagery obtained by 
UAV was progressed using Pix4D mapper (ver 4.6.5, Pix4D) to construct the dense point 
clouds, orthomosaic, and DSMs, of which coordinate was corrected by GCP calibration. By 
identifying the measuring points at the orthomosaic, the coordinates of the measuring points 
were extracted using ArcGIS Pro (ver 2.4.1, Esri). After inputting the coordinates into the 
Pix4D mapper again, the location of the measuring points was marked at the dense point 
clouds. The plant height obtained from point clouds (PHPC) was then calculated by 
subtraction the altitude of the ground surface from the altitude of the grass surface. On the 
other hand, CSMs were made with ArcGIS Pro by subtraction of the DSM of the field without 
plants from the DSMs with plants. The plant height obtained from CSMs (PHCSM), which 
was in other words the CSM value of each measuring point, was then extracted using ArcGIS 
Pro. Then, both PHPC and PHCSM were compared to the measured value of plant height (PHM) 
to evaluate the accuracy of point clouds and CSMs to estimate the plant height of grasses. 
Finally, the above-ground biomass volume (BV) of the whole grass field instead of the 
particular measuring points was extracted from point clouds and CSMs (BVPC, BCANOPY 
COVERSM), respectively, and compared to each other to unravel the characteristics of point 
clouds and CSMs on estimating above-ground biomass volume of pasture grass. The 
calculation of BCANOPY COVERSM used the geometry function of ArcGIS, and the 
calculation of BVPC used the Volume Tool of Pix4D mapper.  

 

 

Figure 4.1 Workflow of data analysis 
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4.3 Results 

4.3.1 Time series of the plant height estimated by point clouds and DSMs  

Figure 4.2 shows the Time series of measured value of plant height (PHM), plant height 
obtained from point clouds (PHPC) and plant height obtained from crop surface model 
(PHCSM). From 17th July to 3rd September, all the three time series lines remained 
approximately parallel to each other. However, the line of PHCSM stayed lower than the 
reference line all the time, while the PHPC line was almost laying over the reference line. This 
indicated that both CSMs and point clouds could reflect the growth trend of grass, while there 
was a constant difference existing between the plant height estimated by CSMs and the 
reference value.  

 

Figure 4.2 Time series of PHM, PHPC and PHCSM 
 

4.3.2 Comparison of the accuracies of plant height estimated by DSM and 3D point cloud 
data 

Figure 4.3 shows the relationship between PHM and the estimated plant height by CSMS 
(PHCSM). The number of samples was 48 (6 samples × 8 times of ground survey). The 
regression coefficient was close to 1, which suggests the regression line was nearly parallel 
to the 1:1 line. On the other hand, the intercept was approximately 10, suggesting there was 
a difference of about 10 cm between PHM and PHCSM, which stayed stable during the whole 
survey period since the regression coefficient was near to 1. The R2 and RMSE were 0.97** 
and 14 cm, respectively, also sowing that PHCSM has the same changing trend, however a 
stable difference with PHM. These showed that CSM can represent the changing trend of the 
plant height of pasture grasses, but has a relatively low accuracy on estimating the value of 
plant height. On the other hand, as shown at Figure 4, the CSM map could show the growth 
unevenness clearly by the estimated plant height within ArcGIS. 
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Figure 4.3 Relationship between PHM and PHCSM 

 

 

Figure 4.4 CSM map for grass field (2019/7/24) 
 

 

Figure 4.5 shows the relationship between the measured value of plant height (PHM) 
and the estimated plant height by point clouds (PHPC). The regression coefficient and 
intercept of the regression equation were 1.04 and -0.16, respectively, making the regression 
line extremely close to the 1:1 line. The coefficient of determination (R2) and the RMSE were 
0.99** and 3 cm, respectively. This result showed that point clouds can estimate plant height 
of pasture grass with extremely high accuracy with little need for calibration.  
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     Figure 4.5 Relationship between PHM and PHPC 
4.3.3 Comparison of biomass volume estimated by DSM and point cloud data  

Figure 4.6 shows the comparison of BVPC and BCANOPY COVERSM of the whole 
field during the whole survey period from 31th May to 3rd September. The BCANOPY 
COVERSM and BVPC of 13th June, 19th June, 26th June, 7th August, and 14th August showed 
minus value because the DSM used as the bare ground surface had included the remaining 
grass after the reaping. The result of t-test showed that there was no significant difference 
between BVPC and BCANOPY COVERSM. This result showed that despite point cloud can 
estimate plant height of pasture grass with higher accuracy than CSM, it gives the same value 
of above-ground biomass volume estimation with CSMs.  

 

Figure 4.6 Comparison of BVPC and BCANOPY COVERSM 
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4.4 Discussion 

Despite the reference plant height was measured by an improved method and was as 
accurate as possible, there was still a 13 cm RMSE of the PHCSM of the grassland. It is 
necessary to realize that there is a problem estimating when estimating plant height using 
CSMs, which is caused not by the human error or the environmental factors such as the wind, 
but by the characteristics of the DSM itself. There is a fact that should not be ignored that the 
airborne laser scanning or the aerial digital photogrammetry were aiming at generating DEMs 
standing for the basic topographic shape at the first place. The key point of DEM generation 
using aerial imagery was never about the bumpy terrain or the above-ground objects, but 
about the smooth terrain. This fact is so important, because it resulted in a critical 
characteristic of the dense matching algorithm such as SfM-MVS, which are the de-noising 
filter and the smooth filter. Both of these filters can improve the accuracy and quality when 
constructing terrain models or large-scaled buildings. however, the disadvantage of using 
these filters is that the small-scaled or low-heighted objects may be smoothed, for example, 
thee leave of crop plants. As long as DSM is still raster data, which represents the ground 
objects with certain-sized pixels, it has a limit on estimating plant height of crops, because 
there are spaces between the crop leaves. This is thought to be the inherent weakness of apply 
remote sensing photogrammetry to agriculture.  

Compared with CSMs, point clouds showed much higher accuracy on estimating plant 
height of grass field. The reason of the high accuracy is considered to be because no smooth 
filter and pixel averaging algorithm has been conducted when constructing point clouds. 
While CSM shows the average height of all the objects of a certain area (for example, one 
pixel), point cloud shows the particular height of one certain object (for example, the leaf of 
grass). In other words, point cloud reflects a more detailed height distribution data of the 
grass field. Therefore, it is considered that point cloud is more qualified than CSM to estimate 
grass field plant height.  

However, on the other hand, when estimating above-ground biomass volume, no 
significant difference was found between the results obtained by CSMs and point clouds. It 
is because when calculating the total value of the grass above-ground volume with point 
cloud, not only the dense points of the canopy that were included, but also the lower parts 
between the grass leaves, including the ground surface. As the result, point cloud yields the 
same value as CSM on grass above-ground biomass volume estimation. The spaces between 
the leaves, which has been found an error factor and should be excluded when estimating 
plant height, is no longer an error factor when estimating above-ground biomass volume and 
should be considered in order to increase the accuracy. This led to a conclusion that point 
cloud is more qualified on estimating plant height of grass than CSM, but has the same 
accuracy as CSM on estimating above-ground biomass volume.  
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There has been mainly two purpose for remote sensing at agriculture field, monitoring 
the current status of the crop land, and predicting the final yield of the crops before harvesting. 
Before UAV was popularized, the former purpose could not be fully achieved, because 
neither satellite imagery nor laser scanning was properly suit for the purpose. The ground 
resolution of satellite imagery, which is usually larger than one meter, is too large for a single 
crop land. The laser scanning conducted by ground survey is both time and labor consuming, 
making it almost not realistic for the whole crop field. This is exactly why UAV is so crucial 
on applying remote sensing to the real agriculture sites. It is more precise than satellite 
imagery, and more efficient than laser scanning, making it perfectly suit the purpose of 
current status monitoring of crop lands. For decades, remote sensing has found difficulties 
on benefiting the farmers directly. With UAV becoming a trustable platform of remote 
sensing, it is finally possible to help farmers make better management of their own crop land, 
by not only the traditional CSM data, but also the precise dense point cloud data.  

 

4.5 Conclusion of this chapter 

In this study, the abilities of dense point clouds and CSMs on estimating plant height 
and above-ground biomass volume for pasture grass have been validated and compared based 
on multiple-time surveys. Plant height was monitored by dense point cloud with very high 
accuracy (RMSE = 3.5 cm), while the plant height monitored by CSMs was consistently 
lower than the reference value. On the other hand, no significant difference exists between 
the above-ground biomass volume estimated by dense point cloud and CSMs. These results 
show that dense point cloud has an advantage on reflecting current status of crops, while has 
the same accuracy with CSMs on predicting above-ground biomass volume. When the 
purpose of the UAV survey is to monitor the precise status of the crops or identify the lodging 
area, point cloud is a better choice of data; while when the purpose is estimating the biomass 
volume of the whole field with little requirement of details, DSM data provides the estimated 
value with both accuracy and efficiency.   
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Chapter 5 Relationship between NDVI and Canopy Cover Sensed by Small UAV 
under Different Ground Resolution 

 

5.1 Introduction 

    Canopy cover (CC) is a relatively easily measured property that is a is indicator of crop 
growth, and an important parameter in crop simulation models, such as AquaCrop model. 
When simulating crop development, AquaCrop describes the development expansion of the 
CC using the percentage area of green canopy cover. According to the Food and Agriculture 
Organization (FAO), CC is defined as the ratio between the soil surface covered by the green 
canopy cover over the ground surface. CC value ranges from 0, when there is a bare soil, to 
1, where the ground is fully covered by the vegetation canopy. The maximum value of CC is 
decided by the crop characteristic. By means of a logistic type equation, AquaCrop describes 
the development of the canopy between generation and the moment maximum CC is reached. 
And then, at the end of the season when the senescence starts, the CC value declines [1]. 
Accurate and efficient estimation of CC would allow improved scheduling and allocation of 
irrigation water [2].  

    On the other hand, during the last three decades, Vegetation indices (VIs) have been 
extensively used for tracing and monitoring vegetation conditions such as health, growth 
levels and water or nutrients stress [3]. Previous studies have shown that various spectral 
calculated from visible and near- infrared reflectance data, are linearly related to the value of 
CC [4]. Healthy canopies of green vegetation have a very distinct interaction with certain 
portions of the electromagnetic spectrum. In the visible region, chlorophyll causes strong 
absorption of energy, primarily for use in photosynthesis. This absorption peaks in the red 
and blue region s of the visible spectrum, while the green region is reflected by chlorophyll, 
thus leading to the green color of most leaves. This strong contrast between the reflectance 
of red and near infrared regions of the electromagnet spectrum has been used to develop the 
Normalized Difference Vegetation Index (NDVI), a VI that has been widely used in the 
agricultural remote sensing field [3]. High resolution satellite data obtained from 
multispectral satellite sensors such as NOAA AVHRR, Terra MODIS, Landsat TM and all 
others that acquire data in both the visible and the near infrared regions have been used to 
generate Vis such as NDVI, to make better crop management, monitor the growing stress, 
and estimate the yield. Furthermore, during the last 10 years, the research methodology and 
data analysis techniques from traditional remote sensing has been used to process aerial 
images that has much higher spatial and temporal resolutions taken by Unmanned Aerial 
Vehicles (UAVs). This rapid development of remote sensing and precision agriculture 
provide aerial imagery with various resolution.  

    However, because remote sensing data may show different values even in the same 
position of the same species of vegetation, only a few studies have estimated CC with UAV-
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obtained NDVI and show that UAV-based NDVI has the same linear regression relationship 
with CC as satellite-based NDVI. To explore the interchangeability of UAV-based NDVI 
and satellite-sensed NDVI on monitoring CC, this study discussed the possibility of CC 
estimation using remote sensed NDVI data under various spatial resolution of a peanut 
experimental field in Hokkaido, Japan.  

 

5.2 Methodology 

5.2.1 Data collection  

    This study was conducted in the experimental field of Obihiro University of Agriculture 
and Veterinary Medicine, located in Obihiro City, Hokkaido, Japan (143.1709-143.1747°N, 
42.8698-42.8671°E, 60.6-99.8m altitude). The experimental field has a total area of 3.2 
hectors (200×160m), which was separated to multiple sectors planted with various 
experimental crops. The peanuts sector inside the experimental field was selected as the study 
site to compare NDVI and CC. The peanuts usually have relatively spread forms of about 
30-50 cm high with long branches that grow close to the ground. This morphological 
characteristic makes peanut a good objective to study the relationship between NDVI and 
CC, because NDVI tends to perform poor correlation to CC because of the variation of Leaf 
Area Index (LAI) when the vegetation cover area is the same, and this kind of variation of 
LAI is relatively unapparent in peanuts. The area of the peanut field is 1600 m2 (40×40m), 
with the plant density of 7.7 plant/m2. The soil surface of the plant area was covered by white 
mulch films, because insolation during the early stage of growth is necessary to insure the 
basic vegetation growth of peanuts in low temperature region such as Hokkaido, and there 
was risk of chilling injury during the autumn of Hokkaido.  

    The RGB imagery of the experimental field was taken by Phantom 4 Pro (DJI) in 31th 
July, 2019, and the reflectance imagery was taken by a portable multispectral camera Sequoia 
(Parrot), which was installed on Inspire 1(DJI) at 1st August, 2019. The flight data is shown 
at Table 5.1.  

Table 5.1 Flight parameters 

Equipment Date Height Speed Overlap-top Overlap-side Resolution 

Phantom 4 Pro 7/31 50 m 4.8 m/s 80% 80% 1.3 cm/pixel 

Inspire 1 & 
Sequoia 

8/1 40 m 3.0 m/s 80% 80% 5.9 cm/pixel 
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5.2.2 Data analysis 

    After obtaining aerial imagery, an RGB orthomosaic image and a reflectance map of the 
experimental field were generated with the Structure from Motion (SfM) software, Pix4D 
Mapper (ver4.6.4, Pix4D). The RGB orthomosaic image was used to separate the vegetation, 
soil and mulch films in a Geographic Information System (GIS) software, ArcGIS Pro (ver 
2.3.0, Esri) with a supervised image classification tool. The result of classification is shown 
at Figure 5.2. Basing on the classified raster, the CC value of the peanuts field was calculated 
using Eq.1, where “Vegetation”, “Soil” and “Mulch film” mean the number of pixels covered 
by green vegetation canopy, soil and mulch films, respectively. To obtain the CC and NDVI 
values under different ground resolutions, we divided the peanut field to squared grids with 
the side length of 0.5 m 1.0 m, 2.5 m, 5.0 m, and 10 m. As an example, the 1.0 m grids are 
shown at Figure 5.3. Basing on the georeferenced reflectance map, the NDVI values of the 
peanuts field was calculated by Equation 2, where “NIR” and “Red” mean the reflectance 
volume of the near-infrared region and the red region. The relationship between NDVI and 
CC values of each size of grids was determined using a least-squares fitting algorithm with 
python (ver. 3.7). An Analysis of Covariance (ANCOVA) was carried out to testify if there 
is significant difference between the relationships between NDVI and CC under different 
ground resolutions. Finally, the accuracy of the regression equation was verified suing RMSE.  

 

 

Figure 5.2 Classification result 
 (Left: RGB orthomosaic image; Right: Classified raster) 
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Figure 5.3 Example of squared grid dividing the peanuts field (Grid size: 1.0 m)  
 

 

CC	 = 	 !"#"$%$&'(
	!"#"$%&'(	*	+'&,	*	-.,/0	1&,2	

		      (1) 

Where “Vegetation”, “Soil” and “Mulch film” mean the number of pixels covered by green 
vegetation canopy, soil and mulch films, respectively. 

 

NDVI	 = 	 	𝑁𝐼𝑅	−	𝑅𝑒𝑑	
		𝑁𝐼𝑅	+	𝑅𝑒𝑑		

		                                       (2) 

 

Where “NIR” and “Red” mean the reflectance volume of the near-infrared region and the red 
region. 

 



 

71 
 

5.3 Results 

5.3.1 Relationship between NDVI and canopy cover under different ground resolution  

Figure 5.4 a, b shows the spatial distribution of NDVI and vegetation cover under the 
original resolution of the peanuts field. NDVI tended to be high in the area covered by 
vegetation and low at the area covered by soil or mulch films. This is because the surface of 
vegetation has a lower reflectance rate in the red region and a higher reflectance in the near-
infrared region, while the soil and the plastic mulch films have similar reflectance in both 
regions. Besides, the mulch film has a lower NDVI than soil, because the PCANOPY 
COVER material has a relatively higher reflectance of red, and at the meantime, a lower 
reflectance of near-infrared than soil [5]. The spatial distribution of NDVI of the other grid 
sizes (0.5 m, 1.0 m, 2.5 m, 5.0 m, and 10 m) showed the same trend. The NDVI value varied 
from -0.47 to 0.68 under the original resolution, from -0.37 to 0.61 under 0.5 m grid size, 
from -0.29 to 0.40 under 1.0, grid size, from -0.25 to 0.24 under 2.5 m grid size, from -0.10 
to 0.13 under 5.0 m grid size, and from -0.05 to 0.08 under 10 m grid size. Unlike the crops 
or forests with the vertical growth pattern, the maximum NDVI value of peanuts was less 
than 0.7. This is because peanuts have a low-height, wide-expanding and horizontal-trained 
canopies which cause relatively low LAI within the canopies. The CC values varied from 
0.00 to 1.00 under the original resolution, from 0.00 to 1.00 under 0.5 m grid size, from 0.00 
to 0.74 under 1.0m grid size, from 0.03 to 0.53 under 2.5 m grid size, from 0.14 to 0.42 under 
5.0 m grid size, and from 0.19 to 0.35 under 10 m grid size. The range of both NDVI and CC 
values decreased with the increase of grid sizes.  

 

 

Figure 5.4 Spatial distribution of NDVI (a) and vegetation cover (b) 
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Figure 5.5 a, b, c, d, e shows the correlation between NDVI and CC under each grid 
size. NDVI was strongly correlated with CC under the resolution of 0.5 m, 1.0 m, 2.5 m, 5.0 
m, and10 m (R2=0.88**, 0.92**, 0.94**, 0.89**, and 0.93**, respectively). The shape of the 
linear regression line (y=ax+b) of NDVI and CC closely resembled to each other, with the 
slopes (a) of 1.16, 1.11, 1.09, 1.08, and 1.06, respectively, and the intercepts (b) of 0.25, 0.25, 
0.25, 0.25, and 0.25, respectively. The incept values indicate that a grid with 25 percent of it 
covered by peanuts canopies has an approximately NDVI value of 0. The slope values 
slightly decreased with the increasing of grid size, resulting the NDVI values of the grids 
without any vegetation cover varies from 0.5 m to 10 m (-0.21, -0.22, -0.23, -0.23, and -0.24, 
respectively). This is thought to be caused by the offset effect of two kinds of abnormal value 
of NDVI, one kind of the abnormal value happens in the grids with relatively low CC value 
but high NDVI values, due to the high LAI: the other kind of abnormal value is the grid with 
a high percentage of mulch films, which causes a lower NDVI value than the normal soil 
ground surface.  

 

 

Figure 5.5 Relationship between NDVI and CC 
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5.3.2 Accuracy of predicted canopy cover by NDVI  

To testify the significance of the differences between each regression equation, an 
ANCOVA was conducted with an Excel data analysis add-on, XLSTAT (ver 2020.5.1, 
Addinsoft), where CC as the dependent variable, while NDVI and ground resolution as the 
explanatory variables. The result is shown at Table 5.2. The p value of all kinds of grid sizes 
was near to 1.000, indicating that the grid sizes have no significant effect on the relationship 
between NDVI and CC.  

 

Table 5.2 Model parameters of ANCOVA 

 

 

Therefore, despite the slight difference between the regression equations of the five 
kinds of grid sizes, it is considered that the NDVI value of peanuts remains the same 
relationship with CC under different ground resolution. Since the offset effect of two 
abnormal values of NDVI was most remarkable at the 10 m grids, the equation derived from 
the data of 10m grid size was used to predict CC using NDVI. The relationship between the 
predicted CC value and the reference CC value was shown at Figure 5.6. The RMSE of CC 
estimation of each grid size from 0.50 m to 10 m was 0.081, 0.089, 0.048, 0.025, 0.020, 0.014, 
respectively. 
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Figure 5.6 Relationship between the predicted CC value and the reference CC value 
 

5.4 Discussion  

 

5.5 Conclusion of this chapter  

    Herein, we analyzed the relationships between NDVI and CC values of peanuts in the 
experimental field using UAV-sensed data under five kinds of ground resolutions. As the 
result, the NDVI showed highly correlated linear relationship with CC under each ground 
resolution. Slight differences of slopes and intercepts was found between the regression 
equations because two kinds of abnormal values of NDVI caused by high LAI and plastic 
material on the ground surface tend to cancel each other out in the larger grids. This kind of 
differences was found not significant due to an ANCOVA. The regression equation of 10 m 
grid size performed a moderate estimation accuracy of CC with the RMSE less than 0.01. 
This result demonstrated the possibility of using UAV multispectral imagery for CC 
monitoring with the same regression equations as satellite multispectral imagery. 
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Chapter 6 Assessment of Three Automated Identification Methods for Ground 
Objects Based on UAV Imagery 

 

6.1 Introduction  

    Despite recent advances and development in earth observing satellites, temporal resolution 
and cloud cover are some of the obstacles present for many quantitative remote sensing 
applications such as monitoring and detecting dynamics of environmental systems. Since the 
2010s, unmanned aerial vehicle (UAV) has been popular for various purposes such as 
disaster relief, civil engineering surveys, pesticide spraying, and infrastructure inspections 
[1]. Compared to earth observation satellites such as Landsat, Terr, and SPOT, UAVs have 
advantages such as high mobility, high resolution, and low altitude flight (unaffected by 
clouds), which enable them to achieve highly accurate and precise observation of the ground 
objects.  

   Ground object identification using UAV imagery is helpful for an improved environmental 
and resource management system. For example, the occurrence of waste items all over the 
village, farming land, and natural parks have resulted in garbage management becoming a 
serious local environmental issue. Additionally, plastic pollution due to agricultural activities 
is an important source of pollution as they are difficult to quantify [2]. Furthermore, 
uncontrolled open dumping and burning pollutes water and soil, affects plants, increases 
vectors of disease, emits odors and green-house gasses into the atmosphere, and poses serious 
health risks to people working at open dumping sites [3]-[4]. Micro-plastics, formed when 
waste plastics are fragmented by photochemical, mechanical, and biological processes, 
contaminate aquatic ecosystems through passive or active ingestion by a wide range of 
organisms [5]. Environmental degradation, because of poor waste management, decreases 
the quality and quantity of forest, fisheries, and tourism resources. Such degradation has 
negative impacts on local industries, which in turn does indirectly affect people’s well-being 
[6]-[9]. To sustainably mitigate and monitor drivers of environmental degradation, including 
ground objects such as agricultural wastes, vegetation, soil, weak vegetation, plastic sheets 
and metals, requires transdisciplinary collaboration in identification and monitoring amongst 
societal stakeholders and researchers.  

    Vegetation canopy cover monitoring is another topic that can be benefited from precise 
ground object identification, providing important information for forestry management and 
ecosystem service survey. Canopy cover (CC) is an easily measured characteristic that is an 
indicator of crop growth and an important parameter in crop simulation models, such as the 
Aqua Crop model [10]. Accurate and efficient CC estimation would allow improved 
scheduling and allocation of irrigation water [11]. Furthermore, identifying dead or 
weakened plants can help farmers to make better field management decisions. Therefore, 
identifying crop cover and weakened vegetation precisely and efficiently using UAV 
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imagery is thought to be helpful to rural environmental management, agriculture 
development, and integrated resource management. Most previous studies have only applied 
the normalized difference vegetation index (NDVI) threshold method for land cover 
classification and have not assessed the classification accuracy.  

    Ground object classification has been studied worldwide and can be achieved through 
different approaches. Vegetation indices have been extensively used to trace and monitor 
vegetation conditions such as health, growth levels, and water or nutrient stress [12]. Previous 
studies have shown that various spectral calculations based on visible and near-infrared 
reflectance data can reflect the growth status of vegetation [13]. In the last decade, research 
methodology and data analysis techniques from traditional remote sensing have been used to 
process aerial images obtained using UAVs that have high spatial and temporal resolutions, 
which allows precise NDVI data of the ground surface. Not only can the health condition of 
plants be monitored using NDVI, but discovery of the weakened vegetation, soil, and plastic 
and metal items is also possible, which have significantly different reflectance rates in the 
band ranges of red and near-infrared light [14]. Furthermore, PCANOPY COVER and metal 
materials have lower NDVIs than that of soil because of a relatively higher reflectance in the 
red range and a lower reflectance of near-infrared range than soil [15]. Therefore, the NDVI 
threshold method has been used as one of the standards to classify the land cover. Putr et al. 
(2015) successfully detected forest cover over multiple years in a national forest park using 
Landsat images with the NDVI threshold method [16]. Singh et al. (2020) assessed changes 
in land cover in a rural area with Landsat images using the NDVI threshold, and precisely 
detected the decrease in the densely vegetated area [17]. Hashim et al. (2019) performed 
urban vegetation classification using the NDVI threshold method based on very high-
resolution Pleiades satellite image, and achieved a 70% overall accuracy [18]. El-Gammal et 
al. (2014) classified vegetation, non-vegetation, and water bodies in a rural area with Landsat 
images using the NDVI threshold method and achieved an extremely high overall accuracy 
of 96% [19]. This research shows that the NDVI threshold method is a practical classifier for 
land use classification. 

    Other methods for land cover classification include machine learning approaches, which 
classify the image depending on appropriate training samples. The machine learning 
algorithm allows image diagnosis to be conducted in an automatic and efficient manner. One 
of the most common methods of machine learning classification based on red, green, and 
blue-colored (RGB) images, such as the orthomosaic constructed from aerial images, is to 
classify the pixels depending on their RGB values according to the training samples. Hassan 
et al. (2011) generated land use/land cover maps with UAV-obtained RGB images using the 
supervised classification algorithm (maximum likelihood) and achieved a 90% overall 
classification accuracy [20]. Hamylton et al. (2020) compared the classification results with 
UAV GCB images using the pixel classification, visual interpretation, and machine learning 
approaches, and the machine learning method showed the highest overall accuracy of 85% 
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[21]. Shin et al. (2019) conducted classification of forest burn severity with UAV-obtained 
multispectral imagery using the maximum likelihood and threshold methods and achieved 
overall accuracies of 89% and 71%, respectively [22]. These results showed that the pixel-
based machine learning method could achieve very high accuracy at land cover classification.  

    Differing from traditional pixel-based classification methods, the object-based image 
analysis (OBIA) method first separates the image into segments which are small polygons 
constructed of several neighboring and similar-valued pixels [23]. Then, with appropriate 
training samples, the classification is performed by dividing the segments into different 
classes according to their shape, size, and spectral content [24]. Compared to traditional 
pixel-based classification methods, OBIA is thought to be accurate for hydrologic modeling 
and vegetation detection owing to its ability to detect the health status as well as the factors 
influencing the biological habitats in a rapid, accurate, and cost-effective manner [25]. The 
OBIA is one of the most popular classifiers for land cover classification and has been applied 
and verified worldwide. However, no study has yet compared the classification accuracy of 
methods using the NDVI threshold, RGB image-based machine learning, and OBIA in rural 
areas. Natesan et al. (2018) performed land use classification using UAV-obtained 
multispectral images, and achieved overall accuracies of 78% and 50% for water bodies and 
mixed-colored classification classes, respectively [26]. Ahmed et al. (2017) compared 
different UAV camera data and platform performance for classifying forest, shrub, and 
herbaceous layers; bare soil; and built-up areas using the OBIA method and achieved overall 
accuracies of 90% and 80% with the multispectral camera and RGB sensor, respectively [27]. 
Sarronet et al. (2018) proposed a method to map individual mango tree production using the 
geographic object-based image analysis (GEOBIA) and obtained an RMSE% accuracy 
ranging from 20% to 29% [28]. Brovkina et al. (2019) performed forest stand classification 
with UAV-based NDVI and point dense clouds using the OBIA method and achieved a 
Kappa coefficient accuracy of 0.74 [29]. Comparison of classification performance between 
UAV and satellite multispectral image aerial data using the OBIA method by Yang et al. 
(2019) yielded Kappa coefficients of 0.713 and 0.538, respectively [30]. Ventura et al. (2018) 
performed mapping and classification of marine habitats with UAV-obtained RGB images 
using the OBIA method and achieved an overall accuracy of >80% in different study sites 
[25].  

    The automated identification methods have been applicate at agricultural field for batter 
field monitoring and managements. Lanthier et al. (2008) conducted a comparative study 
between supervised pixel-oriented and the OBIA classifications in a precision agriculture 
context using hyperspectral images to identify three different crop species (corn, peas and 
beans), and found out that the OBIA method achieved better performance with the Kappa of 
0.8268 [31]. Lebourgeois et al. (2017) analyzed and optimized the performance of a 
combined Random Forest classifier / OBIA approach and applied it to multisource satellite 
data to produce land use maps of a smallholder agricultural zone at five different 
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nomenclature levels of the crops, and achieved an overall accuracy of 91.7% and 64.4% for 
the cropland and crop subclass levels respectively [32]. Zheng et al. (2019) presented the 
crop vision dataset for deep-learning-based classification and detection method for over 30 
categories of crops and achieved the overall accuracy of over 99% [33]. However, these 
studies were only focused on vegetation monitoring and classification, instead of the overall 
environment including the non-vegetation objects which also have influence on better field 
management.  

    Unlike, satellite remote sensing methods, UAV surveys can identify accurately with high 
resolution and are also suited for small scale research applications. Applicability of these 
methods could provide societal stakeholders and researchers as a transdisciplinary approach 
in ground object identification, monitoring and decision-making abilities contributing to 
sustainable community development. However, for this approach to be used by stakeholders 
involved in integrated resource management, the following should be made clear (1) What 
are the characteristics of the three methods in terms of the accuracy of identification of the 
ground object? (2) What are the advantages and disadvantages of the three methods according 
to different ground object? (3) what are the recommendations for the choice of different 
methods toward integrated resource management? Therefore, this study aimed at performing 
ground matter identification with three different methods (NDVI threshold, RGB image-
based machine learning, and Object-based image analysis (OBIA) method), comparing the 
total overall accuracy, and discussing the characteristics and optimal classification for each 
method.  

 

6.2 Methodology 

6.2.1 Study site  

    The aerial surveys were conducted within the experimental field (total area: 3.2 ha) of 
Obihiro University of Agriculture and Veterinary Medicine located at 42.8688°N, 
143.1725°E, with an altitude of 75 m. The area used for classification verification is shown 
surrounded by the red dotted line in Figure 6.1. The ground objects at the study site were 
vegetation, dead/weakened vegetation, soil, plastic multi-sheet, plastic blue-sheet, and metal 
pipes (Figure 6.2). The vegetation included crops such as wheat, pasture grass, pumpkin, 
and peanut. The dead/weakened vegetation in this study site was barley which was near the 
harvest stage. If the methods discussed in this study could identify the weakened vegetation 
accurately, it would provide a useful tool for precision agriculture by helping farmers detect 
growth problems of the crops. A multi-sheet is a thin, smooth, and translucent film used in 
agriculture fields to maintain the temperature and moisture of soil and is made of 
polyethylene, which is the same material as that from which plastic bags are manufactured, 
is barely biodegradable, and can cause problems not only for the natural environment but 
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also for the health of livestock and humans. The blue-sheet is made of the same material as 
the multi-sheet, but has a thick, rough, and blue-colored surface, which results in a difference 
in the spectrophotometry reflection characteristics of these two kinds of polyethylene 
products. Multi-sheet, blue-sheet, and metal pipes are materials that are often found in most 
open waste dumping sites, which means they have similar visual appearance and 
spectrophotometry reflection characteristics.  

 

 

Figure 6.1. Aerial image of the experimental field with the classification verification 
site marked by the red dotted line. 
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Figure 6.2. The ground objects at the study site: (a) Vegetation; (b) Dead/weakened 
vegetation; (c) Soil; (d) Multi-sheet and metal ; (e) Plastic blue sheet  

 

6.2.2 Data collection  

    Aerial surveys were conducted twice on August 1st, 2019. The lightweight UAVs and 
camera parameters used for both surveys are shown in Figure 6.3 and Table 6.1. The 
Phantom 4 Pro (DJI) was used to obtain the RGB images of the study site, and the Inspire 2 
(DJI) equipped with a multispectral sensor and a sunlight sensor Sequoia (Parrot) was used 
to obtain the multispectral images (green band, 510–590 nm; red band, 620–700 nm; red-
edge band, 715–775 nm; near-infrared band, 750–830 nm). A 10000-mA mobile battery 
(Anker Power Core) was also attached to the Inspire 1 to power the multispectral sensor. 
Considering that the agriculture field had relatively simple ground objects and lacked the 
characteristic points that help match images, the flight route used for both aerial surveys was 
a double grid to ensure successful image processing.  
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Figure 6.3. Unmanned aerial vehicles (UAVs) used for the aerial surveys: 
(a) Phantom 4 Pro (DJI); (b) Inspire 1 (DJI) with Sequoia (Parrot) 

 

Table 6.1. Unmanned aerial vehicle (UAV) and camera specifics  

 

  RGB Imagery  Multispectral Imagery 

UAV model Phantom 4 Pro (DJI) Inspire 1 (DJI) 

Total weight 1375 g 3400 g 

Diagonal size 350 mm 581 mm 

Maximum flight time Approximately 30 min Approximately 18 min 

Camera type 1 inch CMOS Multispectral Sensor 

Image size 3840 × 2160 pixels 1280 × 960 pixels 

Angle of view 84° 74° 

Top overlap rate 80% 80% 

Side overlap rate 80% 80% 

Camera angle 75° from horizon 90° degrees from horizon 

Flight height 50 m 40 m 

Ground resolution 1.6 cm/pixel 6.2 cm/pixel 
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    As shown in Figure 6.1, seven ground control points (GCPs) were selected within the 
experimental field. The position information of the seven GCPs was obtained by a Global 
Navigation Satellite System (GNSS) device Hiper V (TOPCON). 

    The Structure from Motion (SfM) technology can reconstruct the 3D structure of the object 
surface based on multiple, overlapping images taken by a moving camera. In the present 
study, the SfM process of the UAV images was conducted using Agisoft Metashape 
Professional Edition (ver. 1.8.0, Agisoft).  

    The image processing workflow is illustrated in Figure 6.4. After obtaining the aerial 
images using UAVs and importing them into the software, a tie point cloud was generated 
by aligning the images and finding the characteristic points existing in the overlapping areas 
between the images. Then, the position information of the GCPs obtained from the GNSS 
measurements was imported into the software and matched with the anti-aircraft signals in 
the images, which corrected the tie point cloud to the accurate geographic location. Based on 
the initial process results, a dense point cloud was generated based on depth maps calculated 
using dense stereo matching. Because generating the dense cloud was the most time-
consuming step of the SfM process and that higher the density of the point cloud, the more 
complicated would be the subsequent calculations, in the present study, a medium quality 
dense cloud was generated. Based on the dense cloud information, a 3D polygonal mesh was 
constructed by connecting the points with polygonal surfaces. After the surface model was 
constructed, a texture model was created by extracting the RGB color value and calibrating 
the brightness and white balance, making the 3D model have the same visual appearance as 
that of the actual object. Finally, based on the texture model, the RGB and multispectral (red 
and near-infrared) orthomosaics were exported. The ground resolution of the final products 
of the SfM procedures was 1.6 cm for panchromatic and 4.2 cm for multispectral products. 
The NDVI raster was then calculated using the Raster Calculator geo-processing tool in 
ArcGIS Pro (ver. 2.4.1, Esri).  
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                       Figure 6.4. Workflow for the Structure from Motion (SfM) process 
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6.2.3 Classification procedures  

i) NDVI Threshold Method  

    As mentioned in the introduction, the NDVI is an index mostly used to evaluate the health 
condition of plants. The higher the NDVI value, the healthier is the vegetation. Some objects 
other than plants also have specific NDVI values. The reflectance characteristics and the 
ranges of NDVI values of these objects have been discussed by many previous studies [34]-
[39]. Although the NDVI values and spectral characteristic of the same object are various 
because of the differences in the used sensor or the ground resolution of the remote sensing 
data, there is an agreement that the dense and healthy vegetation has the NDVI value of more 
than 0.2 due to the extremely high reflectance of the near infrared band of light and the 
relatively low reflectance of the red light [40], and the NDVI value of the bare dry soil is 
around 0 due to the similar reflectance of the red light and the near infrared band of light [41]. 
Although the weakened vegetation has less chloroplast which leads to a lower reflectance of 
near infrared wave of light, the leaves are still conducting photosynthetic reaction. Therefore, 
the NDVI of the weakened or dead vegetation used in this study is lower than the normal 
vegetation but slightly higher than the bare soil. The plastic materials have different 
reflectance features due to the coating color or transmittance of light. However, the mean 
reflectance of red light (0.0375) from multiple plastic material is higher than the near infrared 
band of light (0.299), leading to a negative value of NDVI [42]. Same spectral features have 
been found on the commonly used metal such as Aluminum, iron and their alloys [43], [44]. 
Based on this characteristic of NDVI, the NDVI thresholds were used to classify the study 
area. The optimal significant figures of the NDVI threshold for the classification of ground 
objects have shown to be to the first decimal place, which was used in the NDVI threshold 
method in the present study (Table 6.2). The classification using this method was conducted 
within ArcGIS Pro (ver. 2.4.1, Esri). First, the NDVI raster was imported into the software. 
Then, the classes between the NDVI thresholds were extracted as independent raster layers 
using the Extract by Attributes geo-processing tool. To assign the attribute value for each 
class raster, the layers were processed using the Int tool, after which the vegetation layer was 
assigned the class number one, the soil layer as two, the dead/weakened vegetation layer as 
three, the multi-sheet and metal layer as four, and the blue-sheet layer as five. Additionally, 
the NDVI threshold of the blue-sheet class could not be defined since the NDVI value of the 
blue-sheet ranges from -0.1 to 0.1, which was included in both the soil class and the weakened 
vegetation class. Finally, the five layers were processed using the Mosaic to New Raster geo-
processing tool, and a raster including the five classes of the entire study area was generated.  
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Table 6.2. Normalized difference vegetation index (NDVI) threshold values for the 
different classes 

Class Multi-sheet 
and Metal Soil Weakened 

Vegetation Vegetation 

NDVI 
threshold -0.3 to -0.2 -0.2 to 0.0 0.0 to 0.2 0.2 to 1.0 

 

ii) RGB Image-based Machine Learning Method  

The RGB image-based machine learning method uses the interactive Supervised 
Classification function of ArcGIS Pro. First, the RGB orthomosaic was input to the software, 
and a pyramid of the orthomosaic was built to achieve the optimal interactive performance. 
Next, five empty shape-file (polygon) layers for the classes (vegetation, soil, dead/weakened 
vegetation, multi-sheet and metal, and blue-sheet) were created and approximately 10–20 
training samples for each class were manually distributed within the polygons. The number 
of training samples varied because the areas occupied by the different classes in the study 
area were not equal. To achieve the optimal classification result, all the training samples were 
determined at the pixel level, which means the error range was less than 2 cm. Therefore, 
although the required input data and operation steps for this method were simpler than those 
required for the NDVI threshold method, manual determination of the training samples was 
quite time-consuming. Finally, the maximum likelihood classification was performed on the 
orthomosaic layer of the study area based on the RGB values of the training samples.  

 

iii) OBIA Method  

    The OBIA can classify the image objects by dividing the entire image into small segments 
according to their shape, size, and spectral content. The software used for this method was 
eCognition Developer (ver. 9.0, Trimble). First, a new project including the RGB 
orthomosaic, red band reflectance orthomosaic, near-infrared reflectance orthomosaic, and 
NDVI raster was created in the software, and was displayed as one RGB-mixed layer in the 
workspace, where the near-infrared was displayed as green and NDVI as red. Next, the mixed 
image was separated into multiple segments using the Multiresolution Segmentation tool. 
The scale factor, which decides the average size of the segments and is commonly set 
between 100 and 150 for high resolution UAV images [25], was set to 100 in the present 
study to obtain the classification result as precisely as possible. The result of segmentation is 
shown in Figure 6.5. Then, five classes were created inside the Class Hierarchy window and 
80 to 200 segments for each class were selected as training samples using the Select Samples 
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tool. Finally, the classification was conducted according to the mean RGB value, mean 
brightness, standard deviation RGB, position, and shape of the mixed layer.  

 

 

Figure 6.5. Segmentation result (eCognition Developer 9.0, Trimble) 
 

6.2.4 Accuracy evaluation of the classification methods  

    The accuracy assessments for the classification results of the three methods were 
performed with ArcGIS Pro. First, the orthomosaic and classification raster from the 
classification methods were input into the software. Next, a point shape-file with 1000 
assessment points was created using the Creating Accuracy Assessment Point geo-processing 
tool (Figure 6.6).  

    The attribute table of the created point shape-file included both the Ground Truth field 
which is the reference value, and the Classification Field, which is the test value. The 
reference value was determined by visual judgement, by zooming into the point position and 
deciding manually what class the point belonged to. The visual judgement was also 
conducted at the pixel level, which means the tolerance of error was less than 2 cm. The test 
value was extracted from the classification raster using the Extract Values to Points geo-
processing tool. Finally, the accuracy assessment for each classification result was conducted 
using the Compute Confuse Matrix geo-processing tool, by calculating the user’s accuracy, 
the producer’s accuracy, and the Kappa coefficient.  
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Figure 6.6. One thousand assessment points used for the accuracy assessment  
of the classification results  

 

6.3 Results  

6.3.1. UAV Mapping Products 

    Figure 6.7 shows the RGB orthomosaic, red band orthomosaic, near-infrared orthomosaic, 
and NDVI raster generated from the UAV image, and the mixed RGB image in eCognition 
Developer, which were the photogrammetry products used for the subsequent classification. 
The characteristic of each product was the basis for the different performances of the three 
methods.  

    As shown in Figure 6.7(a), In the RGB orthomosaic, the vegetation, multi-sheet and metal, 
and blue-sheet had characteristic RGB values that could be expressed clearly and brightly. 
However, the RGB values of soil and weakened vegetation were close to each other, resulting 
in a similar visual appearance. Specifically, the average RGB values of soil were 223, 209, 
and 190, respectively, whereas those of the weakened vegetation were 217, 204, and 174, 
respectively, for ten randomly selected sample pixels. This fact suggested that the RGB 
orthomosaic had a disadvantage in distinguishing soil and weakened vegetation.  

    In contrast, as shown in Figure 6.7(b), the red band orthomosaic could distinguish soil and 
weakened vegetation, but distinguishing between the weakened vegetation and the multi-
sheet and metal was difficult because they all had a high reflectance rate of red light, as was 
distinguishing between the blue-sheet and soil because they both had an intermediate 
reflectance rate of red light.  

    As shown in Figure 6.7(c), the vegetation area was clearly visible at the near-infrared 
orthomosaic, because the chlorophyll in healthy vegetation strongly reflects the near-infrared 
wavelength, and appears as fluorescence in the near-infrared image. Even for the weakened 
vegetation, a small amount of chlorophyll still produced a visible fluorescence. This fact 
makes the near-infrared band an important indicator for vegetation in the remote sensing field. 
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However, the objects other than vegetation have no significant reflectance characteristic at 
the near-infrared, which resulted in the similar appearance of soil, multi-sheet, metal, and 
blue-sheet in the near-infrared orthomosaic. Because NDVI is a normalized value of the 
difference between the reflectance of the red and near-infrared bands, the NDVI raster shows 
more features of different objects that have specific characteristics in terms of red or near-
infrared band reflectance.  

    As shown in Figure 6.7(d), the NDVI raster clearly distinguished between soil, vegetation, 
and multi-sheet and metal. However, the weakened vegetation and blue-sheet had similar 
intermediate NDVI values as that of soil because the former had a high reflectance at both 
the red and near-infrared bands, and the latter had a low reflectance at both bands. Based on 
these findings, the RGB and multispectral orthomosaics had both advantages and 
disadvantages for identifying different ground objects. Therefore, a mixed layer was prepared 
in eCognition Developer to maximize the strength of each kind of data. As shown in Figure 
6.6(e), different from the orthomosaic, the mixed layer clearly displayed the weakened 
vegetation, and different from the multispectral orthomosaics and NDVI, it also clearly 
displayed the objects with specific RGB values such as the blue-sheet.  
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Figure 6.7. Mapping products generated from the unmanned aerial vehicle (UAV) 
images: (a) Red-green-blue (RGB) orthomosaic; (b) Red band orthomosaic; (c) Near-
infrared orthomosaic; (d) normalized difference vegetation index (NDVI) raster; (e) 

Mixed image in eCognition Developer  

(a) 

(b) 

(c)

) 

(d) 

(e) 
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6.3.2. Comparison of Classification Results 

    The classification results of the three methods are shown in Figure 6.8, and the Pixel 
percentage of the classes for each classification method is shown in Figure 6.9. Due to these 
results, the NDVI Threshold Method failed to identify the blue-sheets, and tend to classify 
the vegetation and soil as the weakened vegetation. In the opposite, the RGB Machine 
Learning Method classification result had the highest pixel percentage for the vegetation and 
the lowest pixel percentage for the weakened vegetation, showing the strength on identifying 
healthy vegetation and the weakness on identifying the weakened vegetation. On the other 
hand, as shown by the red square in Figure 6.8(c), the OBIA method was able to identify the 
weakened vegetation which the RGB Machine Learning Method failed to recognize.  
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(a) 

 

(b) 

 

(c) 

 

Figure 6.8. Classification results: (a) Normalized difference vegetation index (NDVI) 
threshold method; (b) Red-green-blue (RGB) image-based machine learning method; 

(c) Object-based image analysis (OBIA) method 
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Figure 6.9. Pixel percentage of the classes for each classification method  
 

6.3.3. Accuracy Evaluation of the Classification Methods 

    The accuracies of the three methods were evaluated using the confusion matrix calculated 
with ArcGIS Pro. The confusion matrix (also known as error matrix) is a commonly used 
evaluation tool for classification verification. In the confusion matrix tables used in the 
present study, each row represents the classified results, whereas each column represents the 
reference results (the true value). For example, the first row of “Vegetation” in Table 6.3 
lists the values 279, 33, 6, 5, 5, and 328, which means that among all the 328 points that were 
classified as “Vegetation” by this method, 279 points were within the vegetation area of the 
study site, whereas 33 points were in the soil area, indicating they were misclassified. 
Similarly, the first column of “Vegetation” in Table 6.3 lists the values 279, 6, 32, 0, 0, 317, 
meaning that among the 317 points that should have been classified as vegetation, only 279 
points were correctly classified by this method, whereas six points were misclassified as soil. 
Three indicators were calculated based on the confusion matrix and are presented in Tables 
4 to 6: the user’s accuracy, the producer’s accuracy, and the overall Kappa index. The user’s 
accuracy shows the false positive, meaning that the classification result was positive, whereas 
it should have been negative. For example, the user’s accuracy for “Vegetation” in Table 6.3 
was 0.851, meaning that among all the points that had been classified as vegetation by this 
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method, only 85.1% were correct. Similarly, the producer’s accuracy shows the false 
negative, meaning that the classification result was negative, but the correct answer should 
have been positive. For example, the producer’s accuracy for “Vegetation” in Table 6.3 was 
0.880, which means that among all the points that should have been classified as vegetation, 
only 88.0% was classified correctly by this method. The Kappa index, also known as Cohen’s 
Kappa coefficient, is a statistical indicator used for conformance testing. The value of the 
Kappa index ranges between -1 and 1. The higher the Kappa index, the higher is the 
classification accuracy.  

    Table 6.3(a) presents the confusion matrix of the NDVI threshold method. The overall 
Kappa index of this method was 0.576, which is considered as “fair to good” [31]. The 
confusion matrix of the RGB image-based machine learning method is presented in Table 
6.3(b). The overall Kappa index of this method was 0.798, which is considered as “excellent”. 
Table 6.3(c) presents the confusion matrix of the OBIA method. The overall Kappa index of 
this method was 0.793, which was close to that of the RGB image-based machine learning 
method and was also considered as “excellent”.  
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Table 6.3(a). Confusion matrix for the normalized difference vegetation index (NDVI) 
threshold method  

Class Name Vegetation Soil Weakened 
Vegetation 

Multi- 
sheet 

Blue- 
sheet Total User_ 

Accuracy Kappa 

Vegetation 279 33 6 5 5 328 0.851    
Soil 6 426 58 18 6 514 0.829    

Weakened vegetation 32 59 29 2 23 145 0.200    
Multisheet and Metal 0 6 1 6 0 13 0.462    

Bluesheet 0 0 0 0 0 0 0.000    
Total 317 524 94 31 34 1000 0.000    

Producer_accuracy 0.880  0.813  0.309  0.194  0.000  0.000  0.740    
Kappa               0.576  

 

Table 6.3(b). Confusion matrix for the red-green-blue (RGB) mage-based machine 
learning method 

Class Name Vegetation Soil Weakened 
Vegetation 

Multi- 
sheet 

Blue- 
sheet Total User_ 

Accuracy Kappa 

Vegetation 300 27 5 0 0 332 0.904    
Soil 11 486 50 7 0 554 0.877    

Weakened vegetation 4 10 36 0 0 50 0.720    
Multisheet and Metal 1 1 3 24 1 30 0.800    

Bluesheet 1 0 0 0 33 34 0.971    
Total 317 524 94 31 34 1000 0.000    

Producer_accuracy 0.946  0.927  0.383  0.774  0.971  0.000  0.879    
Kappa               0.798  

 

Table 6.3(c). Confusion matrix for the object-based image analysis (OBIA) method 

Class Name Vegetation Soil Weakened 
Vegetation 

Multi- 
sheet 

Blue- 
sheet Total User_ 

Accuracy Kappa 

Vegetation 311 43 21 6 0 381 0.816    

Soil 3 468 31 3 0 505 0.927    

Weakened vegetation 0 6 41 0 0 47 0.872    

Multisheet and Metal 2 5 1 21 1 30 0.700    

Bluesheet 1 2 0 1 33 37 0.892    

Total 317 524 94 31 34 1000 0.000    

Producer_accuracy 0.981  0.893  0.436  0.677  0.971  0.000  0.874    

Kappa               0.793  
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6.4 Discussion  

    As shown in Figures 6.8(a) and 6.9, the NDVI threshold method could not detect the blue-
sheet because it had the same NDVI value range as that of soil (-0.2 to 0.0). In addition, only 
a part of the multi-sheet in the field was successfully classified, whereas the remaining was 
classified as soil. This was because the multi-sheet had been installed in the field for more 
than two months by the time the aerial surveys were conducted, and the surface was covered 
by some soil or dust, which resulted in an NDVI close to that of soil. This result can also be 
observed in Figure 6.8. In the area surrounded by the red dotted line, soil was mistakenly 
determined as multi-sheet or metal. This was because the soil in that area had been stepped 
on by the surveyors, leaving behind footprints. The water content of the soil compacted by 
human weight was higher than that of the normal topsoil in the field, which decreased the 
NDVI value of the compacted area to a level lower than that of the threshold for multi-sheet 
and metal. This fact indicated that the NDVI value of various soils depends on the soil water 
content, and misclassification is possible when distinguishing soil and plastic or metal 
materials simply according to the NDVI threshold. Furthermore, the NDVI threshold method 
determined the vegetation edges to be weakened vegetation, although these parts were 
actually green leaves with good health, which can also be observed in Figure 6.8. This was 
because the ground resolution of the multispectral image was more than 6 cm, and the pixels 
at the edge of the vegetation had average NDVI values of both the vegetation and soil, which 
made them appear like the weakened vegetation. This suggested that despite the UAV 
multispectral image having a better ground resolution than the traditional aerial photos, there 
were still error values at the edge of the plant community. In contrast, as shown in Figure 
6.7(b), the RGB image-based machine learning method had a better performance than the 
former method. This method clearly detected the areas with blue-sheet, multi-sheet, and 
metal, and classified the compacted soil in the correct class despite the difference in soil 
water content. However, it still showed a disadvantage in detecting the weakened vegetation, 
because these areas had similar RGB values to those of soil, and the only standard for 
classification of this method was the RGB value. In contrast, as shown by the red dotted line 
in Figure 6.7(c), the OBIA method successfully detected the area of the weakened vegetation 
which was misclassified by the former method. However, it still showed one disadvantage, 
which is the misclassification of some weakened vegetation as the normal vegetation class. 
Figure 6.6 also reflects this trend of the OBIA method. This was because even though the 
plants belonged to the weakened vegetation class, the NDVI value might still be similar to 
that of the healthy vegetation when plant density is extremely high.  

    The NDVI Threshold Method achieved high accuracy in classifying vegetation and soil. 
The user’s and producer’s accuracies were above 0.80 for both classes. This suggested that 
the NDVI threshold was appropriate for identifying vegetation and soil. In contrast, the user’s 
(0.200) and producer’s (0.309) accuracies of the weakened vegetation class were both low. 
Furthermore, the user’s accuracy was lower than the producer’s accuracy, meaning that this 
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method had a tendency to falsely recognize other objects as weakened vegetation. Similarly, 
both the user’s (0.462) and producer’s (0.194) accuracies were low for the multi-sheet and 
metal class, and the user’s accuracy was higher than the producer’s accuracy. This means 
that the NDVI threshold method had a tendency to ignore the objects that should had been 
classified as multi-sheet or metal. Finally, both the user’s and producer’s accuracies were 
0.000 for the blue-sheet class, meaning that the NDVI threshold method did not have the 
ability to identify the plastic material with a rough surface. Furthermore, a more precise 
threshold value for the classification can lead to a more accurate classification result. In this 
study and the previous studies, the threshold values were accurate to one decimal place. There 
is possibility that more specific discussions about the spectral signature of different objects 
can lead to a more accurate NDVI threshold value.  

    For the RGB Machine Learning Method, both the user’s (0.904) and producer’s (0.946) 
accuracies of the vegetation class were higher than 0.900, and both the user’s (0.877) and 
producer’s (0.927) accuracies were higher than 0.800, suggesting that this method had an 
extremely good performance in identifying vegetation and soil in this study area. The user’s 
accuracy (0.720) of the weakened vegetation class was much higher than the producer’s 
accuracy (0.383), meaning that the RGB mage-based machine learning method tended to 
ignore the weakened vegetation. Similar to the observation and discussion presented in 
section 3.2, this result also demonstrated that this method had a disadvantage of mistakenly 
determining the weakened vegetation as soil. In contrast, both the user’s (0.800) and 
producer’s (0.774) accuracies of the multi-sheet and metal class were very high. Furthermore, 
the user’s (0.971) and producer’s (0.971) accuracies of the blue-sheet class were extremely 
high, meaning that this method could detect the plastic and metal materials with very high 
accuracy.  

    For the OBIA Method, similar to the former method, both the vegetation and soil classes 
had very high user’s (0.816 and 0.927, respectively) and producer’s (0. 981 and 0.893, 
respectively) accuracies. The user’s accuracy (0.872) was higher than the producer’s 
accuracy (0.436) of the weakened vegetation class. This indicated that although the problem 
of ignoring the weakened vegetation also existed in the OBIA method, this method achieved 
a high accuracy at detecting the weakened vegetation, with the best performance among all 
the three methods. However, regarding the multi-sheet and metal and blue-sheet classes, the 
user’s (0.700 and 0.892, respectively) and producer’s (0.677 and 0.971, respectively) 
accuracies were lower than or equal to those of the former method, suggesting that although 
the OBIA could detect the plastic and metal materials with satisfactory accuracy, its 
performance was slightly inferior to that of the RGB image-based machine learning method. 
Additionally, in this study, the numbers of training sample for this method were limited to 
be consistent (on the pixel level) with the RGB imagery machine learning method for a better 
comparison. Higher classification accuracy can be achieved by using more training samples 
for both the RGB method and the OBIA method.  
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    Based on these result, users of ground object classification such as societal stakeholders 
or researchers form different fields of agricultural and land resources, fisheries resources, 
forests, agroforestry, ecosystem services would have a clearer standard to decide the optimal 
classification methods to suit their requirements. Therefore, this study is thought to be helpful 
to the sustainable community development based on transdisciplinary integration of natural 
resource management systems. It is also important that community work together in the 
analysis of common UAV imagery to create transdisciplinary collaboration.  

    Integrated resource management are composed of multidisciplinary areas such as forests, 
agricultural lands, residential areas, lakes, marshes, and oceans that covers agricultural, land, 
water, forest, fisheries and tourism resources, agro ecology, protected areas, ecosystem-based 
approaches, human well-being, and integrated approaches for synergistic management of 
different resources. Although there has been many research dealing with resource 
management methods focusing on individual resources, there are not many research 
discussing evaluation methods that incorporate these resources represented by 
transdisciplinary approach in a cross-sectional manner. In addition to vegetation such as 
crops and trees, there are various objects such as plastics and metals wastes on the ground 
that are subject to resource management. Therefore, methods discussed in this study for 
ground object identification is expected to be an important indicator for societal stakeholders 
and researchers in employing UAVs identification methods for integrated resource 
management.  

 

6.5 Conclusion of this chapter  

This study was conducted to see the applicability and accuracy of NDVI threshold, RGB 
Imaged based machine learning method and OBIA method using UAV for ground object 
identification. For this, vegetation, soil, weakened vegetation, blue-sheet, multi-sheet and 
metal were classified and accuracy of each method was determined.  

According to the results of the study, the three classification methods discussed in the present 
study are based on different technical considerations and exhibited both advantages and 
disadvantages from certain perspectives.  

1. According to the overall Kappa index, the RGB image-based machine learning method 
had the best performance in classifying all types of ground objects in the study area, 
whereas the OBIA method had a slightly lower overall accuracy and the NDVI threshold 
method had the lowest accuracy among the three methods.  

2. On the other hand, considering practicality, the NDVI threshold method demands least 
input data which is only the NDVI raster of the field, and it was also the least time-
consuming method and could provide an acceptable accuracy at determining the 
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vegetation, soil, plastic with smooth surface and the metal material, which made it a 
practical tool for land cover classification when a moderate accuracy was required.  

3. Both the RGB image-based machine learning and OBIA methods were time- and labor-
consuming owing to their requirement for precise training samples but had high accuracy 
classification results.  

4. The RGB image-based machine learning method had better performance at detecting 
plastic and metal materials, which had bright RGB color, whereas the latter method had 
a higher accuracy at detecting the objects that were not very visually striking, such as 
the weakened vegetation.  

5. The OBIA method had better performance at separating objects with similar RGB 
characteristics but different multispectral reflectance characteristics, such as the soil and 
the weakened vegetation.  

As the conclusion of these results, at the field of agriculture and natural resource where 
vegetation and soil are the main objects for the classification, it is recommended to use the 
NDVI Threshold Method. It demands only the multispectral imagery data and has less 
requirement for the image analysis software and technique. At the field of rural or city 
environment management, where not only vegetation and soil but also the plastic and metal 
material are the main object for the classification, it is recommended to use the RGB Imagery 
Machine Learning Method. It only demands the RGB imagery data, and could achieve high 
accuracy with precise imagery analysis with the geographic information system software. 
Finally, when both the RGB and the multispectral imagery data are available, it is 
recommended to use the OBIA Method, which could achieve high accuracy at identifying 
different objects with the similar visual appearance.  

The limitation of this study is that the categories of the ground objects used in this study were 
not comprehensive enough to cover every kind of object which can appear at the agricultural 
or rural area. With discussing the spectral characteristics of more objects, the optimal 
classification parameters such as the NDVI threshold value and the segmentation parameter 
for the OBIA method for more objects can be determined, which eventually leading to a 
higher classification accuracy.  
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Chapter 7 Conclusion and Recommendations 
  

   On completion of the discussion, the following conclusions can be drawn: first, to optimally 
practice direct georeferenced in farmlands, a lower aspect ratio of the GCP distribution is 
recommended to achieve better accuracy. When there are more than six available GCPs, the 
GDI is the proper factor to describe the GCP calibration ability. The higher the GDI, the 
higher the accuracy. According to the concept of GDI, the optimal distribution of GCPs can 
reduce the necessary number of GCPs to achieve a certain accuracy, and by which improve 
the efficiency of UAV photogrammetric surveys. After discussed the optimal way to geo-
calibrate the aerial products, we have developed a precise evaluation method for farmlands 
based on crop plant height, vegetation canopy cover, and vegetation index using UAV aerial 
images. At chapter 3, we verified and compared the commonly used DSM plant height 
method for different crops, and found out that: The DSM value should not be used to 
represent the plant height directly, but should use the regression model for different crops 
with special plant shapes. At chapter 4, we compared the DSM method and the point cloud 
method on estimating both plant height and above-ground canopy volume, and found out that: 
Point could provide more accurate plant height at specific position than DSM, However, 
when it comes to above ground biomass estimation, the two kinds of data provide the same 
performance. At chapter 5, we discussed the relationship between NDVI and canopy cover 
under different ground resolution, and found out that: There is a strong correlation between 
NDVI and canopy cover value, while the various materials other than vegetation and soil 
have a significant influence on their relationship, suggesting that identification of the ground 
objects is important when conducting precise evaluation of a farmland. And finally, at chapter 
6, we compared three classification methods on identifying ground objects in the farmland, 
and found out that: The NDVI threshold methods is the most efficient, and both the RGB 
method and the OBIA method provide higher accuracy. These results are thought to 
contribute greatly to the development of the precise evaluation of the farmland. The novelty 
of these topics are: Developed an original index to evaluate GCP setting by both number and 
spatial distribution; Unraveled the reason for the deviation between DSM-derived plant 
height and reference value, and suggested method of moderation; Discussed the difference 
in restricting crop structure by different data types, and suggested the proper use for each 
method; Verified the linear correlation between NDVI and CC sensed by UAV under different 
resolutions and found out the error factor when monitoring vegetation index by UAV; and 
Applied the land-use classification methods on ground objects identification at farmland, and 
suggested the proper methods for identifying objects made from different materials.  

    By these results, we were able to answer the questions at the introduction. Finally, the 
results suggested by this research could be summarized as the integrated management flow 
chart. RGB imagery obtained by UAV could be used to construct DSM data and point cloud 
data, which are useful to monitor the crop status during the early growth stage by calculating 
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plant height or canopy volume. On the other hand, during the later growth stage, when the 
plant height stops to increase, the canopy cover and NDVI calculated by multispectral 
imagery obtained by UAV is more qualified for crop growth monitoring. Moreover, ground 
object identification discussed by this research could not only increase the accuracy when 
evaluating the crop status using canopy cover or NDVI, but also contribute to a better 
farmland management strategy and environment. This integrate management method for crop 
growth assessment and farmland management based on multiple kind of data types and 
analysis methods is thought to be the novelty of this research.  
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Appendix 
 

Acronyms   Complete Expression  

UAV    Unmanned Aerial Vehicle  

GPS    Global Positioning System  

GCP    Ground Control Point  

SfM    Structure from Motion  

PPK    Post Processing Kinematic  

RTK    Real Time Kinematic  

GNSS    Global Navigation Satellite System  

NRTK    Network Real Time Kinematic  

GAM    Generalized Additive Model  

RMSE    Root Mean Square Error  

MAE    Mean Absolute Error  

DEM    Digital Elevation Model  

DSM    Digital Surface Model  

GDI    GCP Distribution Index  

STDEV   Standard Deviation  

RMSPE   Root Mean Squared Percentage Error  

JGD   Japanese Geodetic Datum 

WGS   World Geodetic System 

CSM   Crop Surface Model 

PC   Point Cloud 

DTM   Digital Terrain Model 

NDVI   Normalized Difference Vegetation Index 

CC   Canopy Cover 

LAI   Leaf Area Index 
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FAO    Food and Agriculture Organization (of the United Nations) 

ANCOVA  Analysis of Covariance 

OBIA   Object-based Image Analysis 

GEOBIA  Geographic Object-Based Image Analysis 

AGH   Above Ground Height 

GSD   Ground Sampling Distance  

 


